Pregunta
Multiply. Write your answer in simplest form. \( \sqrt{30} \cdot \sqrt{5} \)
Ask by Joseph Perkins. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(5\sqrt{6}\)
Solución
To multiply \(\sqrt{30}\) and \(\sqrt{5}\) and simplify the expression, follow these steps:
1. **Multiply the Square Roots:**
\[
\sqrt{30} \cdot \sqrt{5} = \sqrt{30 \times 5} = \sqrt{150}
\]
2. **Simplify \(\sqrt{150}\):**
Break down 150 into its prime factors to find perfect squares:
\[
150 = 25 \times 6
\]
Here, 25 is a perfect square because \(25 = 5^2\).
3. **Apply the Square Root to the Factors:**
\[
\sqrt{150} = \sqrt{25 \times 6} = \sqrt{25} \times \sqrt{6} = 5\sqrt{6}
\]
So, the simplified form of \(\sqrt{30} \cdot \sqrt{5}\) is:
\[
5\sqrt{6}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
When you multiply square roots, you can multiply the numbers inside the radicals together. So, \( \sqrt{30} \cdot \sqrt{5} = \sqrt{30 \cdot 5} = \sqrt{150} \). Now, to simplify \( \sqrt{150} \), we can break it down into its prime factors: \( 150 = 25 \cdot 6 = 5^2 \cdot 6 \). Thus, \( \sqrt{150} = \sqrt{25} \cdot \sqrt{6} = 5\sqrt{6} \). So the answer in simplest form is \( 5\sqrt{6} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium