2. Find the coefficient of \( x^{2} \) in expansion of \( (2+x)^{5} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the coefficient of \( x^{2} \) in the expansion of \( (2+x)^{5} \), we can use the binomial theorem, which states that: \[ (a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \] In this case, let \( a = 2 \), \( b = x \), and \( n = 5 \). We want the term where \( x^{2} \) appears, which corresponds to \( k=2 \). The term in the expansion is given by: \[ \binom{5}{2} (2)^{5-2} (x)^{2} = \binom{5}{2} (2)^{3} (x)^{2} \] Calculating \( \binom{5}{2} = \frac{5!}{2!(5-2)!} = 10 \) and \( (2)^{3} = 8 \), we get: \[ 10 \cdot 8 \cdot x^{2} = 80 x^{2} \] Thus, the coefficient of \( x^{2} \) in the expansion is \( 80 \).