\( \left. \begin{array} { l } { - 4 x + 5 > 3 - 4 x } \\ { x \in } \end{array} \right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
In this inequality, we can simplify it to isolate \( x \). Starting from \(-4x + 5 > 3 - 4x\), if we add \(4x\) to both sides, we are left with \(5 > 3\). This is a true statement, which means that the inequality holds for all real numbers. Therefore, \( x \) can be any value in the set of real numbers, or in interval notation, \( x \in (-\infty, \infty) \). Now, let’s switch gears a bit! It’s always great to remember that inequalities, much like life, can have solutions that are infinite and unrestricted. They remind us to keep our options open, just as in life when we embrace multiple paths.