Pregunta
upstudy study bank question image url

How much would you have to deposit in an account with a \( 9 \% \) interest rate, compounded continuously, to have \( \$ 1500 \) in your account 5 years later? \[ P=\$[?] \] Round to the nearest cent.

Ask by Norton Romero. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to deposit \$956.44 today to have \$1,500 in your account after 5 years with a 9% continuously compounded interest rate.

Solución

To determine how much you need to deposit today (\( P \)) to have \$1,500 in your account after 5 years with a continuously compounded interest rate of 9%, we can use the formula for continuous compounding: \[ A = P \cdot e^{rt} \] Where: - \( A \) is the future amount (\$1,500), - \( r \) is the annual interest rate (0.09), - \( t \) is the time in years (5), - \( e \) is the base of the natural logarithm (approximately 2.71828). **Step-by-Step Calculation:** 1. **Rearrange the Formula to Solve for \( P \):** \[ P = \frac{A}{e^{rt}} \] 2. **Plug in the Known Values:** \[ P = \frac{1500}{e^{0.09 \times 5}} = \frac{1500}{e^{0.45}} \] 3. **Calculate \( e^{0.45} \):** \[ e^{0.45} \approx 1.5683 \] 4. **Compute \( P \):** \[ P = \frac{1500}{1.5683} \approx 956.44 \] **Final Answer:** \[ P = \$956.44 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out how much you need to deposit initially, you can use the formula for continuous compounding, which is given by: \[ A = Pe^{rt} \] Here, \( A \) is the amount of money accumulated after n years, including interest. \( P \) is the principal amount (the initial sum of money). \( r \) is the annual interest rate (decimal), and \( t \) is the time the money is invested for in years. In your case, you want to solve for \( P \): \[ 1500 = P e^{0.09 \times 5} \] Calculating \( e^{0.45} \) (since \( 0.09 \times 5 = 0.45 \)) gives you approximately 1.5683. So, we can rewrite the equation as: \[ 1500 = P \times 1.5683 \] Now, divide both sides by 1.5683: \[ P = \frac{1500}{1.5683} \approx 955.66 \] Therefore, you would need to deposit approximately \( \$955.66 \) to have \( \$1500 \) in 5 years.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad