Pregunta
upstudy study bank question image url

(b) \( \lim _{x \rightarrow+\infty} x \cdot 2^{x} \)

Ask by Smith Garrett. in Italy
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The limit of \( x \cdot 2^{x} \) as \( x \) approaches infinity is infinity.

Solución

To evaluate the limit: \[ \lim_{x \rightarrow +\infty} x \cdot 2^{x} \] **Analysis:** 1. **Exponential Growth vs. Polynomial Growth:** - The function \( 2^x \) is an exponential function, which grows **much faster** than any polynomial function of \( x \). In this case, \( x \) is a linear (first-degree polynomial) function. - As \( x \) becomes very large, the exponential term \( 2^x \) will dominate the linear term \( x \). 2. **Applying the Limit:** - Since \( 2^x \) grows exponentially without bound as \( x \rightarrow +\infty \), multiplying it by \( x \) (which also tends to infinity, but much more slowly) will still result in an expression that grows without bound. 3. **Conclusion:** - Therefore, the limit is: \[ \lim_{x \rightarrow +\infty} x \cdot 2^{x} = +\infty \] **Intuitive Understanding:** - Imagine \( x = 10 \): \( x \cdot 2^{x} = 10 \cdot 1024 = 10,240 \) - For \( x = 20 \): \( x \cdot 2^{x} = 20 \cdot 1,048,576 = 20,971,520 \) - As \( x \) increases, the value of \( 2^x \) increases so rapidly that even when multiplied by \( x \), the product still tends to infinity. **Final Answer:** \[ \lim_{x \rightarrow +\infty} x \cdot 2^{x} = +\infty \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

As \( x \) approaches positive infinity, the term \( 2^x \) grows exponentially, much faster than the linear growth of \( x \). Therefore, when you multiply \( x \) by \( 2^x \), the exponential part dominates, and the entire expression \( x \cdot 2^x \) heads towards infinity. In simpler terms, think of \( x \) as a little bystander while \( 2^x \) races away to infinity—eventually, \( x \) can't keep up! For mathematical rigor, you can apply L'Hôpital's Rule, which is often a handy technique for evaluating limits involving the form \( \infty \cdot 0 \). By rewriting the limit as \( \lim_{x \to +\infty} \frac{x}{\frac{1}{2^x}} \) and differentiating the top and bottom, it becomes clear that the exponential function in the denominator will shrink dramatically, confirming that the limit is indeed \( +\infty \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad