Pregunta
Find the domain of the function \( f(x)=\sqrt{21-3 x} \) What is the domain of \( f \) ? \( \square \) (Type your answer in interval notation.)
Ask by Mcguire Hodges. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain of \( f \) is all real numbers less than or equal to 7, written as \((-\infty, 7]\).
Solución
To find the domain of the function \( f(x) = \sqrt{21 - 3x} \), we need to ensure that the expression inside the square root is non-negative:
\[
21 - 3x \geq 0
\]
Solving for \( x \):
\[
-3x \geq -21
\]
\[
x \leq 7
\]
Therefore, the domain of \( f \) consists of all real numbers \( x \) such that \( x \) is less than or equal to 7.
**Domain of \( f \):** \((-\infty, 7]\)
\[\boxed{\,(-\infty,\ 7]\,}\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the domain of the function \( f(x) = \sqrt{21 - 3x} \), we need to ensure that the expression inside the square root is non-negative. This means we set up the inequality: \[ 21 - 3x \geq 0. \] Solving for \( x \), we get: \[ 21 \geq 3x \] or \[ 7 \geq x, \] which can be rewritten as \[ x \leq 7. \] Since there's no restriction on \( x \) being negative or positive from the square root requirement, we can include all values up to 7. Therefore, the domain in interval notation is: \[ (-\infty, 7]. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium