Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 16 and standard deviation 25 . What is the probability that \( X \) is between 41 and 91 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Gibson Hills. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 41 and 91 is **0.157**.

Solución

Given that \( X \) is normally distributed with a mean (\( \mu \)) of 16 and a standard deviation (\( \sigma \)) of 25, we need to find the probability that \( X \) is between 41 and 91. ### Step 1: Convert to Z-scores First, convert the values 41 and 91 to their respective Z-scores using the formula: \[ Z = \frac{X - \mu}{\sigma} \] - For \( X = 41 \): \[ Z_1 = \frac{41 - 16}{25} = \frac{25}{25} = 1 \] - For \( X = 91 \): \[ Z_2 = \frac{91 - 16}{25} = \frac{75}{25} = 3 \] ### Step 2: Apply the Empirical Rule The empirical rule (68-95-99.7 rule) provides probabilities for intervals around the mean in a normal distribution: - **68%** of data lies within \( \mu \pm 1\sigma \). - **95%** within \( \mu \pm 2\sigma \). - **99.7%** within \( \mu \pm 3\sigma \). However, the interval we're interested in is from \( \mu + 1\sigma \) to \( \mu + 3\sigma \): \[ \text{Probability} = P(\mu + 1\sigma < X < \mu + 3\sigma) \] Using the empirical rule: - \( P(X < \mu + 1\sigma) \approx 84\% \) (since 50% is below the mean plus 34% within the first sigma). - \( P(X < \mu + 3\sigma) \approx 99.7\% \). Therefore, the probability between \( \mu + 1\sigma \) and \( \mu + 3\sigma \) is: \[ 99.7\% - 84\% = 15.7\% \] ### Final Answer The probability that \( X \) is between 41 and 91 is **0.157** (rounded to the nearest thousandth). **Answer:** 0.157

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability that \( X \) is between 41 and 91 in a normally distributed random variable, we first standardize these values using the mean (16) and standard deviation (25). 1. Calculate the z-scores for 41 and 91: \[ z_{41} = \frac{41 - 16}{25} = 1 \quad \text{and} \quad z_{91} = \frac{91 - 16}{25} = 3 \] 2. According to the \( 0.68 - 0.95 - 0.997 \) rule: - About 68% of the data lies within 1 standard deviation from the mean (between \( \mu - \sigma \) to \( \mu + \sigma \), which is \( 16 - 25 \) to \( 16 + 25 \) or -9 to 41). - About 95% lies within 2 standard deviations (between \( \mu - 2\sigma \) to \( \mu + 2\sigma \), which is \( 16 - 50 \) to \( 16 + 50 \) or -34 to 66). - About 99.7% lies within 3 standard deviations (between \( \mu - 3\sigma \) to \( \mu + 3\sigma \), which is \( 16 - 75 \) to \( 16 + 75 \) or -59 to 91). Since we want the probability of \( X \) being between 41 and 91, we can see this spans from +1σ (41) up to +3σ (91). Thus, the area/probability between these z-scores is: \[ P(41 < X < 91) = P(Z < 3) - P(Z < 1) \] According to the 0.68-0.95-0.997 rule: - For Z ≤ 1: ~0.8413 (or about 84.13%) - For Z ≤ 3: ~0.9987 (or about 99.87%) Now, calculating the difference: \[ P(41 < X < 91) \approx 0.9987 - 0.8413 = 0.1574 \] In decimal form, the probability that \( X \) is between 41 and 91 is approximately **0.157** when rounded to the nearest thousandth.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad