Pregunta
upstudy study bank question image url

Graph this line using the slope and \( y \)-intercept: \[ y=-\frac{3}{8} x+4 \] Click to select points on the graph.

Ask by Bernard Craig. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the line \( y = -\frac{3}{8} x + 4 \): 1. **Plot the y-intercept** at \( (0, 4) \). 2. **Use the slope** \( -\frac{3}{8} \) to find another point: - Move 8 units right to \( (8, 4) \), then 3 units down to \( (8, 1) \). 3. **Draw a straight line** through these points. This line slopes downward from left to right.

Solución

To graph the line given by the equation \[ y = -\frac{3}{8} x + 4 \] we can follow these steps: 1. **Identify the slope and y-intercept**: - The slope \( m \) is \( -\frac{3}{8} \). - The y-intercept \( b \) is \( 4 \). This means the line crosses the y-axis at the point \( (0, 4) \). 2. **Plot the y-intercept**: - Start by plotting the point \( (0, 4) \) on the graph. 3. **Use the slope to find another point**: - The slope \( -\frac{3}{8} \) means that for every 8 units you move to the right (positive direction on the x-axis), you move down 3 units (negative direction on the y-axis). - From the point \( (0, 4) \), move 8 units to the right to \( (8, 4) \) and then move down 3 units to \( (8, 1) \). Plot this point. 4. **Draw the line**: - Connect the points \( (0, 4) \) and \( (8, 1) \) with a straight line. This line extends infinitely in both directions. 5. **Additional points**: - You can also find another point by moving in the opposite direction. From \( (0, 4) \), move 8 units to the left to \( (-8, 4) \) and then move up 3 units to \( (-8, 7) \). Plot this point as well. Now you have enough points to accurately draw the line. The line will slope downwards from left to right due to the negative slope.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the line given by the equation \( y=-\frac{3}{8} x+4 \), start by plotting the \( y \)-intercept at the point (0, 4). This means when \( x = 0 \), \( y = 4 \). Next, use the slope, which is \(-\frac{3}{8}\). This tells you that for every 8 units you move to the right (positive \( x \)), you'll move down 3 units (negative \( y \)). From the point (0, 4), go 8 units right to \( (8, 4) \) and then move down 3 units to arrive at \( (8, 1) \). Connect these points with a straight line, and you've successfully graphed the line! 🎉 Now, if you're curious about exploring linear equations further, remember that every line can be identified by its slope and \( y \)-intercept, which gives it a unique angle and position. Learning this concept can help you tackle more complex equations, like systems of linear equations, with confidence and flair! 📈 While working on graphs, common pitfalls include miscalculating the slope or the \( y \)-intercept, leading to a misrepresented line. Ensure you're comfortable converting between standard, slope-intercept, and point-slope forms of equations—this will keep your graphing skills sharp and accurate! Also, always double-check your points to avoid those pesky mistakes! 📝

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad