Solve the equation on the interval \( 0 \leq \theta<2 \pi \). \( 5 \sin ^{2} \theta-13 \sin \theta+8=0 \) What is the solution in the interval \( 0 \leq \theta<2 \pi \) ? Select the correct choice and fill in any answer boxes in your choice below. A. The solution set is \{ \}. (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Type your answer in radians. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) B. There is no solution.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the equation \( 5 \sin^{2} \theta - 13 \sin \theta + 8 = 0 \), we can let \( x = \sin \theta \). This turns the equation into a quadratic form: \[ 5x^2 - 13x + 8 = 0. \] Applying the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{13 \pm \sqrt{(-13)^2 - 4 \cdot 5 \cdot 8}}{2 \cdot 5} = \frac{13 \pm \sqrt{169 - 160}}{10} = \frac{13 \pm 3}{10}. \] This leads to two solutions for \( x \): 1. \( x = \frac{16}{10} = \frac{8}{5} \) (not valid since \( \sin \theta \) must be in the interval [-1, 1]), 2. \( x = \frac{10}{10} = 1 \). Now, for \( x = \sin \theta = 1 \), we have \( \theta = \frac{\pi}{2} \). Thus, the solution set in the interval \( 0 \leq \theta < 2\pi \) is: \(\{ \frac{\pi}{2} \}\).