Responder
When a 50 N horizontal force and a 40 N force at 30° or 60° to the horizontal act on an object, the resultant forces are approximately 87 N and 78.1 N, respectively.
Solución
To determine the resultant force when two forces act on an object using a graphical method, we'll break down the process step-by-step. Although we can't draw the vectors here, we'll use numerical calculations to simulate the graphical approach based on the given scale of \(1 \, \text{mm} : 1 \, \text{N}\).
### Given:
1. **Force \( \mathbf{F}_1 \):** 50 N (horizontal)
2. **Force \( \mathbf{F}_2 \):** 40 N at an angle to the horizontal
- **Case 1:** \(30^\circ\) to the horizontal
- **Case 2:** \(60^\circ\) to the horizontal
### Objective:
Find the magnitude of the **resultant force \( \mathbf{R} \)** for both cases.
### Method:
We'll use the **Law of Cosines** to calculate the magnitude of the resultant force when two vectors are at a certain angle to each other.
\[
R = \sqrt{F_1^2 + F_2^2 + 2 F_1 F_2 \cos(\theta)}
\]
where:
- \( R \) = magnitude of the resultant force
- \( F_1 \) and \( F_2 \) = magnitudes of the two forces
- \( \theta \) = angle between the two forces
### Calculations:
#### **Case 1: \(40 \, \text{N}\) at \(30^\circ\) to the horizontal**
1. **Identify the Angle Between Forces:**
- \( \theta = 30^\circ \)
2. **Apply the Law of Cosines:**
\[
R = \sqrt{50^2 + 40^2 + 2 \times 50 \times 40 \times \cos(30^\circ)}
\]
\[
\cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0.8660
\]
\[
R = \sqrt{2500 + 1600 + 4000 \times 0.8660}
\]
\[
R = \sqrt{2500 + 1600 + 3464}
\]
\[
R = \sqrt{7564} \approx 87 \, \text{N}
\]
#### **Case 2: \(40 \, \text{N}\) at \(60^\circ\) to the horizontal**
1. **Identify the Angle Between Forces:**
- \( \theta = 60^\circ \)
2. **Apply the Law of Cosines:**
\[
R = \sqrt{50^2 + 40^2 + 2 \times 50 \times 40 \times \cos(60^\circ)}
\]
\[
\cos(60^\circ) = 0.5
\]
\[
R = \sqrt{2500 + 1600 + 4000 \times 0.5}
\]
\[
R = \sqrt{2500 + 1600 + 2000}
\]
\[
R = \sqrt{6100} \approx 78.1 \, \text{N}
\]
### Summary of Results:
- **When the 40 N force is inclined at \(30^\circ\):**
- **Resultant Force \( R \approx 87 \, \text{N} \)**
- **When the 40 N force is inclined at \(60^\circ\):**
- **Resultant Force \( R \approx 78.1 \, \text{N} \)**
### Graphical Interpretation:
If you were to draw this graphically:
1. **Scale:** \(1 \, \text{mm} = 1 \, \text{N}\)
2. **Draw \( \mathbf{F}_1 \):** Draw a horizontal line 50 mm long.
3. **Draw \( \mathbf{F}_2 \):** From the end of \( \mathbf{F}_1 \), draw a line at the specified angle (30° or 60°) 40 mm long.
4. **Resultant \( \mathbf{R} \):** Draw a line from the origin (start of \( \mathbf{F}_1 \)) to the end of \( \mathbf{F}_2 \). The length of this line represents the magnitude of the resultant force.
Using this method with accurate measurements will give you the resultant forces calculated above.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución