\( 1\times 3\times 5\times ....\times (2x-1)
Ask by Vargas Peters. in Iran
Jan 23,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The expression \( 1 \times 3 \times 5 \times \ldots \times (2x - 1) \) is the product of the first \( x \) odd numbers. This can be represented as \( \frac{(2x)!}{2^x \cdot x!} \). This fascinating mathematical property reveals how the product of odds can be directly linked to factorials, showcasing the beauty of combinatorics in a seemingly simple product! In the context of solving the inequality \( \frac{(2x)!}{2^x \cdot x!} < x^x \), it’s important to recognize that both sides grow quite differently as \( x \) increases. A common mistake here is to ignore the rapid growth of factorials compared to exponential functions. To effectively approach this inequality, consider analyzing the behavior at specific integer values of \( x \) or even employing Stirling's approximation for large \( x \) to understand the comparative growth rates better!