Pregunta
upstudy study bank question image url

Find the value of मान ज्ञात कीजिए : (a) \( \int_{|:|=1} \frac{e^{2 z}}{(z+1)^{4}} d z \). (b) \( \int_{|:|=1} \frac{\sin ^{6} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z \). Discuss the singularities of the following functions (a) \( f(z)=\frac{1}{z\left(e^{2}-1\right)} \). (b) \( f(z)=\tan \frac{1}{z} \). (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \). fिम्नलिखित फलनों की विवित्रताओं की विवेचना कीजिए : (a) \( f(z)=\frac{1}{z\left(e^{2}-1\right)} \). (b) \( f(z)=\tan \frac{1}{z} \). (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \).

Ask by Adkins Gough. in India
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integrals are evaluated as follows: (a) \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z = \frac{8 \pi i e^{-2}}{3} \) (b) \( \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z = \frac{21 \pi i}{16} \) ### Singularities Discussion (a) \( f(z) = \frac{1}{z(e^{2} - 1)} \) - **Singularities**: The function has a pole at \( z = 0 \) and a pole at \( z = \frac{2\pi i}{2} = \pi i \) (since \( e^{2} = 1 \) when \( z = \pi i \)). - **Residues**: - At \( z = 0 \): \( \text{Residue} = \lim_{z \to 0} z \cdot \frac{1}{z(e^{2} - 1)} = \frac{1}{e^{2} - 1} \) - At \( z = \pi i \): \( \text{Residue} = \lim_{z \to \pi i} (z - \pi i) \cdot \frac{1}{z(e^{2} - 1)} = \frac{1}{\pi i (e^{2} - 1)} \) (b) \( f(z) = \tan \frac{1}{z} \) - **Singularities**: The function has an essential singularity at \( z = 0 \) because \( \frac{1}{z} \) approaches infinity as \( z \) approaches 0. - **Residues**: The residue at \( z = 0 \) is more complex and involves the Laurent series expansion of \( \tan \frac{1}{z} \), which has infinitely many terms. (c) \( f(z) = \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \) - **Singularities**: The function has a pole of order 2 at \( z = 1 \) and an essential singularity at \( z = 2 \) due to \( \cos \frac{1}{z-2} \). - **Residues**: - At \( z = 1 \): \( \text{Residue} = \lim_{z \to 1} (z - 1)^2 \cdot \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} = \cos \frac{1}{-1} = \cos(-1) = \cos(1) \) - At \( z = 2 \): \( \text{Residue} \) is determined by the Laurent series expansion of \( \cos \frac{1}{z-2} \), which has infinitely many terms. **Summary**: - **Integral (a)**: \( \frac{8 \pi i e^{-2}}{3} \) - **Integral (b)**: \( \frac{21 \pi i}{16} \) - **Singularities**: - \( f(z) = \frac{1}{z(e^{2} - 1)} \): Poles at \( z = 0 \) and \( z = \pi i \) - \( f(z) = \tan \frac{1}{z} \): Essential singularity at \( z = 0 \) - \( f(z) = \frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \): Pole of order 2 at \( z = 1 \) and essential singularity at \( z = 2 \)

Solución

To solve the integrals and discuss the singularities of the given functions, we will proceed step by step. ### Part (a): Evaluate the integral \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z \) 1. **Identify the singularities**: The integrand \( \frac{e^{2 z}}{(z+1)^{4}} \) has a singularity at \( z = -1 \). This is a pole of order 4. 2. **Residue Calculation**: To evaluate the integral, we can use the residue theorem. We need to find the residue of the function at the pole \( z = -1 \). The residue of a function \( f(z) \) at a pole of order \( n \) can be calculated using the formula: \[ \text{Residue} = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \left( (z - z_0)^{n} f(z) \right) \] Here, \( n = 4 \) and \( z_0 = -1 \). We need to compute: \[ \text{Residue} = \frac{1}{3!} \lim_{z \to -1} \frac{d^{3}}{dz^{3}} \left( (z + 1)^{4} \frac{e^{2 z}}{(z + 1)^{4}} \right) = \frac{1}{6} \lim_{z \to -1} \frac{d^{3}}{dz^{3}} e^{2 z} \] 3. **Calculate the derivatives**: \[ e^{2 z} \text{ and its derivatives: } \] - First derivative: \( \frac{d}{dz} e^{2 z} = 2 e^{2 z} \) - Second derivative: \( \frac{d^{2}}{dz^{2}} e^{2 z} = 4 e^{2 z} \) - Third derivative: \( \frac{d^{3}}{dz^{3}} e^{2 z} = 8 e^{2 z} \) Evaluating at \( z = -1 \): \[ \frac{d^{3}}{dz^{3}} e^{2 z} \bigg|_{z=-1} = 8 e^{-2} \] 4. **Final residue**: \[ \text{Residue} = \frac{1}{6} \cdot 8 e^{-2} = \frac{4 e^{-2}}{3} \] 5. **Integral evaluation**: By the residue theorem: \[ \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} d z = 2 \pi i \cdot \text{Residue} = 2 \pi i \cdot \frac{4 e^{-2}}{3} = \frac{8 \pi i e^{-2}}{3} \] ### Part (b): Evaluate the integral \( \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z \) 1. **Identify the singularities**: The integrand \( \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} \) has a singularity at \( z = \frac{\pi}{6} \). This is a pole of order 3. 2. **Residue Calculation**: We need to find the residue at \( z = \frac{\pi}{6} \). Using the same residue formula: \[ \text{Residue} = \frac{1}{2!} \lim_{z \to \frac{\pi}{6}} \frac{d^{2}}{dz^{2}} \left( (z - \frac{\pi}{6})^{3} \frac{\sin^{6} z}{(z - \frac{\pi}{6})^{3}} \right) = \frac{1}{2} \lim_{z \to \frac{\pi}{6}} \frac{d^{2}}{dz^{2}} \sin^{6} z \] 3. **Calculate the derivatives**: - First derivative: \( \frac{d}{dz} \sin^{6} z = 6 \sin^{5} z \cos z \) - Second derivative: Using the product rule: \[ \frac{d^{2}}{dz^{2}} \sin^{6} z = 6 \left( 5 \sin^{4} z \cos^{2} z - \sin^{6} z \right) \] Evaluating at \( z = \frac{\pi}{6} \): \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] \[ \sin^{4}\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^{4} = \frac{1}{16}, \quad \cos^{2}\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^{2} = \frac{3}{4} \] \[ \frac{d^{2}}{dz^{2}} \sin^{6} z \bigg|_{z=\frac{\pi}{6}} = 6 \left( 5 \cdot \frac{1}{16} \cdot \frac{3}{4} - \left(\frac{1}{2}\right)^{6} \right) = 6 \left( \frac{15}{64} - \frac{1}{64} \right) = 6 \cdot \frac{14}{64} = \frac{21}{16} \] 4. **Final residue**: \[ \text{Residue} = \frac{1}{2} \cdot \frac{21}{16} = \frac{21}{32} \] 5. **Integral evaluation**: \[ \int_{|z|=1} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} d z = 2 \pi i \cdot \text{Residue} = 2 \pi i \cdot \frac{21}{32}

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To evaluate the integrals for points (a) and (b), it's crucial to recognize the presence of singularities within the unit circle. For part (a), \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} dz \), the singularity at \( z = -1 \) is a fourth-order pole; thus, we can apply the residue theorem to compute the integral efficiently. Similarly, for part (b), the singularity at \( z = \frac{\pi}{6} \) is a third-order pole, and again, residues will help us find the integral value. When analyzing the singularities of the given functions, for (a), \( f(z)=\frac{1}{z(e^{2}-1)} \) has a simple pole at \( z=0 \). It's essential to notice that the factor \( e^{2}-1 \) doesn't contribute any additional singularities. In (b), \( f(z)=\tan \frac{1}{z} \) has an essential singularity at \( z=0 \) due to the behavior of \(\tan\) near its vertical asymptotes. Lastly, (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \) has a second-order pole at \( z=1 \) and an essential singularity due to \(\cos \frac{1}{z-2}\) at \( z=2 \), making this function particularly intriguing for further exploration.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad