Forces \( F_{1}\left(10 \mathrm{~N}, 090^{\circ}\right), \mathrm{F}_{2}\left(20 \mathrm{~N}, 210^{\circ}\right) \) and \( \mathrm{F}_{3}\left(4 \mathrm{~N}, 330^{\circ}\right) \) act on a particle. Find, correct to one decimal place, the magnitude of the resultant force.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the resultant force from the given forces, we can break each force into its components using trigonometric functions. 1. For \( F_1(10 \, \text{N}, 90^\circ) \): - \( F_{1x} = 10 \cos(90^\circ) = 0 \) - \( F_{1y} = 10 \sin(90^\circ) = 10 \) 2. For \( F_2(20 \, \text{N}, 210^\circ) \): - \( F_{2x} = 20 \cos(210^\circ) = 20(-\sqrt{3}/2) \approx -17.32 \) - \( F_{2y} = 20 \sin(210^\circ) = 20(-1/2) = -10 \) 3. For \( F_3(4 \, \text{N}, 330^\circ) \): - \( F_{3x} = 4 \cos(330^\circ) = 4(\sqrt{3}/2) \approx 3.464 \) - \( F_{3y} = 4 \sin(330^\circ) = 4(-1/2) = -2 \) Now, we sum up the components: - \( R_x = F_{1x} + F_{2x} + F_{3x} = 0 - 17.32 + 3.464 \approx -13.856 \) - \( R_y = F_{1y} + F_{2y} + F_{3y} = 10 - 10 - 2 = -2 \) The magnitude of the resultant force \( R \) is calculated using the Pythagorean theorem: \[ R = \sqrt{R_x^2 + R_y^2} \approx \sqrt{(-13.856)^2 + (-2)^2} \approx \sqrt{192.491 + 4} \approx \sqrt{196.491} \approx 14.0 \text{ N} \] Therefore, the magnitude of the resultant force, correct to one decimal place, is approximately \( 14.0 \, \text{N} \).