Pregunta
upstudy study bank question image url

5.1 simplify the following expression to a single trigonometric ratio: \( \frac{\sin \left(180^{\circ}-\beta\right) \cdot \sin \beta-1}{\cos (-\beta)} \) 5.2 Hence, determine for which value(s) of \( \beta \), where \( \beta \in\left[0^{\circ} ; 360^{\circ}\right] \) \( \frac{\sin \left(180^{\circ}-\beta\right) \cdot \sin \beta-1}{\cos (-\beta)} \) will be undefined. 5.3 Determine the general solution of \( 3 \sin x=2 \tan x \)

Ask by Franklin Gibbs. in South Africa
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**5.1 Simplified Expression:** \[ -\cos \beta \] **5.2 Undefined Values of \(\beta\):** \[ \beta = 90^{\circ}, \ 270^{\circ} \] **5.3 General Solution of \(3 \sin x = 2 \tan x\):** \[ x = 180^{\circ}k \quad \text{or} \quad x = \pm \cos^{-1}\left( \frac{2}{3} \right) + 360^{\circ}k, \quad k \in \mathbb{Z} \]

Solución

Let's address each part of the problem step-by-step. --- ### **5.1 Simplify the Expression** **Given Expression:** \[ \frac{\sin \left(180^{\circ}-\beta\right) \cdot \sin \beta - 1}{\cos (-\beta)} \] **Simplification Steps:** 1. **Apply Trigonometric Identities:** - \(\sin(180^{\circ} - \beta) = \sin \beta\) (since \(\sin\) is positive in the second quadrant). - \(\cos(-\beta) = \cos \beta\) (since \(\cos\) is an even function). 2. **Substitute the Identities:** \[ \frac{\sin \beta \cdot \sin \beta - 1}{\cos \beta} = \frac{\sin^2 \beta - 1}{\cos \beta} \] 3. **Use the Pythagorean Identity:** \[ \sin^2 \beta + \cos^2 \beta = 1 \quad \Rightarrow \quad \sin^2 \beta - 1 = -\cos^2 \beta \] 4. **Substitute and Simplify:** \[ \frac{-\cos^2 \beta}{\cos \beta} = -\cos \beta \] **Final Simplified Form:** \[ -\cos \beta \] --- ### **5.2 Determine When the Expression is Undefined** **Expression After Simplification:** \[ -\cos \beta \] **Original Expression:** \[ \frac{\sin^2 \beta - 1}{\cos \beta} \] **Understanding When It's Undefined:** The expression is undefined when the denominator is zero. Therefore, we need to find the values of \(\beta\) where: \[ \cos \beta = 0 \] **Solutions in the Interval \([0^{\circ}, 360^{\circ}]\):** \[ \cos \beta = 0 \quad \Rightarrow \quad \beta = 90^{\circ}, \ 270^{\circ} \] **Final Answer:** The expression is undefined at \(\beta = 90^{\circ}\) and \(\beta = 270^{\circ}\). --- ### **5.3 Determine the General Solution of \(3 \sin x = 2 \tan x\)** **Given Equation:** \[ 3 \sin x = 2 \tan x \] **Step-by-Step Solution:** 1. **Express \(\tan x\) in Terms of \(\sin x\) and \(\cos x\):** \[ \tan x = \frac{\sin x}{\cos x} \] Substituting: \[ 3 \sin x = 2 \left( \frac{\sin x}{\cos x} \right) \] 2. **Assume \(\sin x \neq 0\) and \(\cos x \neq 0\) (we'll address \(\sin x = 0\) later):** \[ 3 \sin x \cos x = 2 \sin x \] Divide both sides by \(\sin x\): \[ 3 \cos x = 2 \] Solve for \(\cos x\): \[ \cos x = \frac{2}{3} \] 3. **Find Solutions When \(\cos x = \frac{2}{3}\):** \[ x = \pm \cos^{-1}\left( \frac{2}{3} \right) + 360^{\circ}k, \quad k \in \mathbb{Z} \] 4. **Consider the Case When \(\sin x = 0\):** Substitute \(\sin x = 0\) into the original equation: \[ 3(0) = 2 \tan x \quad \Rightarrow \quad 0 = 0 \] This is always true. Therefore, all angles where \(\sin x = 0\) are solutions: \[ x = 180^{\circ}k, \quad k \in \mathbb{Z} \] **Combined General Solution:** \[ x = 180^{\circ}k \quad \text{or} \quad x = \pm \cos^{-1}\left( \frac{2}{3} \right) + 360^{\circ}k, \quad k \in \mathbb{Z} \] **Final Answer:** All real numbers congruent to 0° modulo 180°, and all real numbers equal to cos⁻¹ (2⁄3) plus a multiple of 360°. In other words, the general solutions are  x = 180°·k  or  x = cos⁻¹(2/3) + 360°·k  for any integer k.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the expression \( \frac{\sin(180^{\circ}-\beta) \cdot \sin \beta - 1}{\cos(-\beta)} \), we start with the knowledge that \( \sin(180^{\circ}-\beta) = \sin \beta \). So, the numerator becomes \( \sin \beta \cdot \sin \beta - 1 = \sin^2 \beta - 1 \). We can further simplify this to \( -\cos^2 \beta \) using the Pythagorean identity. The denominator, \( \cos(-\beta) \), is simply \( \cos \beta \). Thus, our expression becomes \( \frac{-\cos^2\beta}{\cos\beta} = -\cos \beta \), provided \( \cos \beta \neq 0 \). Moving on to the undefined points in \( \frac{\sin(180^{\circ}-\beta) \cdot \sin \beta - 1}{\cos(-\beta)} \): this expression is undefined when the denominator, \( \cos(-\beta) \), equals zero. Since \( \cos(-\beta) = \cos \beta \), we look for values of \( \beta \) such that \( \cos \beta = 0 \). This occurs at \( \beta = 90^{\circ} \) and \( \beta = 270^{\circ} \) in the interval \( [0^{\circ}, 360^{\circ}] \). For the general solution of the equation \( 3 \sin x = 2 \tan x \), we start by rewriting \( \tan x \) in terms of sine and cosine: \( \tan x = \frac{\sin x}{\cos x} \). This gives us the equation \( 3 \sin x = 2 \frac{\sin x}{\cos x} \). We can then multiply through by \( \cos x \) (assuming \( \cos x \neq 0 \)) to get \( 3 \sin x \cos x = 2 \sin x \). Rearranging gives us \( \sin x (3 \cos x - 2) = 0\). This results in two cases: \( \sin x = 0 \) and \( 3 \cos x - 2 = 0\). The solutions for \( \sin x = 0 \) are \( x = n\pi \) (where \( n \) is any integer), and \( 3 \cos x - 2 = 0 \) gives \( \cos x = \frac{2}{3} \), giving angles \( x = \cos^{-1} \left(\frac{2}{3}\right) + 2k\pi \) and \( x = -\cos^{-1} \left(\frac{2}{3}\right) + 2k\pi \) (for any integer \( k \)).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad