Pregunta
upstudy study bank question image url

(ostion Watch Vide hoose ALL answers that describe the quadrilateral \( G H I J \) if \( \overline{G H} \| \overline{I J}, G H=I J \), and diagonals are perpendicular: \( \overline{G I} \perp \overline{H J} \). Answer Attempt out of 2 Parallelogram Rectangle Rhombus Square Trapezoid stbmansmer

Ask by Weber Coles. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadrilateral \( G H I J \) is both a rhombus and a square.

Solución

To determine which quadrilaterals \( G H I J \) can be described based on the given conditions, let's analyze each property step-by-step. ### Given: 1. **Parallel Sides**: \( \overline{G H} \parallel \overline{I J} \) 2. **Equal Lengths**: \( G H = I J \) 3. **Perpendicular Diagonals**: \( \overline{G I} \perp \overline{H J} \) ### Options to Consider: 1. Parallelogram 2. Rectangle 3. Rhombus 4. Square 5. Trapezoid ### Analysis: 1. **Parallelogram**: - **Definition**: Both pairs of opposite sides are parallel. - **Given Conditions**: Only one pair (\( \overline{G H} \parallel \overline{I J} \)) is specified as parallel. - **Conclusion**: Not necessarily a parallelogram unless the other pair is also parallel. 2. **Rectangle**: - **Definition**: Opposite sides are equal and parallel, and all angles are right angles. - **Diagonals**: In a rectangle, diagonals are equal but **not** perpendicular. - **Given Conditions**: Diagonals are perpendicular. - **Conclusion**: **Cannot** be a rectangle. 3. **Rhombus**: - **Definition**: All sides are equal in length, and opposite sides are parallel. - **Diagonals**: Diagonals are **perpendicular**. - **Given Conditions**: Satisfies all conditions (since \( G H = I J \) and diagonals are perpendicular). - **Conclusion**: **Yes**, it can be a rhombus. 4. **Square**: - **Definition**: All sides are equal, opposite sides are parallel, and all angles are right angles. - **Diagonals**: Diagonals are both **equal** and **perpendicular**. - **Given Conditions**: Satisfies all conditions. - **Conclusion**: **Yes**, it can be a square. 5. **Trapezoid**: - **Definition**: At least one pair of opposite sides is parallel. - **Given Conditions**: Only one pair is specified as parallel, and diagonals are perpendicular. - **Diagonal Constraint**: Standard trapezoids do **not** have perpendicular diagonals unless they fit into more specific categories like an isosceles trapezoid with additional properties. - **Conclusion**: Generally, **no**, it isn't a trapezoid under given conditions. ### **Final Answer:** The quadrilateral \( G H I J \) can be described as both a **Rhombus** and a **Square** based on the given properties. **Correct Choices:** - Rhombus - Square

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Quadrilateral \( G H I J \) is specifically described as a trapezoid because it has one pair of parallel sides (\( \overline{G H} \| \overline{I J} \)) and the other pair, which are \( G I \) and \( H J \), are not necessarily parallel. The condition that the diagonals are perpendicular (\( \overline{G I} \perp \overline{H J} \)) indicates that \( G H I J \) is actually a special type of trapezoid called a right trapezoid. This means it retains the properties of a trapezoid while additionally having right angles. Moreover, when the diagonals of a quadrilateral intersect at right angles, it could hint towards being a kite, especially when coupled with equal lengths of the parallel sides. However, since both pairs of sides are not equal in this quadrilateral, this further confirms that \( G H I J \) doesn't fit the definitions of a parallelogram, rectangle, rhombus, or square, but rather remains distinct as a right trapezoid.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad