Pregunta
upstudy study bank question image url

Use the compound interest formula, \( A(t)=P\left(1+\frac{r}{n}\right)^{n t} \cdot \) After a certain amount of years, the value of an investment account is represented by the equation \( 10750\left(1+\frac{0.02}{6}\right)^{90} \cdot \) \( a \). Rounded to the nearest cent, what is the value of the account? \( \$ \) \( b \). What was the initial deposit made to the account? \( \$ \) c. How many years had the account been accumulating interest?

Ask by Campbell Schwartz. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. The account is worth \$14,503.74. b. The initial deposit was \$10,750. c. The account had been accumulating interest for 15 years.

Solución

To solve the problem, we will use the compound interest formula: \[ A(t) = P\left(1+\frac{r}{n}\right)^{nt} \] where: - \( A(t) \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. From the given equation: \[ A(t) = 10750\left(1+\frac{0.02}{6}\right)^{90} \] ### Step 1: Calculate the value of the account \( A(t) \) We will first calculate \( A(t) \) using the provided values. - \( r = 0.02 \) - \( n = 6 \) - \( t = 90/6 = 15 \) years (since the interest is compounded 6 times a year for 15 years) Now, we will calculate \( A(t) \): \[ A(t) = 10750\left(1+\frac{0.02}{6}\right)^{90} \] Calculating the expression inside the parentheses and then raising it to the power of 90: \[ A(t) = 10750\left(1+\frac{0.02}{6}\right)^{90} \] Let's calculate this step by step. 1. Calculate \( \frac{0.02}{6} \) 2. Add 1 to the result. 3. Raise the result to the power of 90. 4. Multiply by 10750. Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(\frac{0.02}{6}\) - step1: Convert the expressions: \(\frac{\frac{1}{50}}{6}\) - step2: Multiply by the reciprocal: \(\frac{1}{50}\times \frac{1}{6}\) - step3: Multiply the fractions: \(\frac{1}{50\times 6}\) - step4: Multiply: \(\frac{1}{300}\) Calculate or simplify the expression \( (1+(0.02/6))^90 \). Calculate the value by following steps: - step0: Calculate: \(\left(1+\left(\frac{0.02}{6}\right)\right)^{90}\) - step1: Divide the terms: \(\left(1+\frac{1}{300}\right)^{90}\) - step2: Add the numbers: \(\left(\frac{301}{300}\right)^{90}\) - step3: Use the properties of exponents: \(\frac{301^{90}}{300^{90}}\) Calculate or simplify the expression \( 10750*(1+(0.02/6))^90 \). Calculate the value by following steps: - step0: Calculate: \(10750\left(1+\left(\frac{0.02}{6}\right)\right)^{90}\) - step1: Divide the terms: \(10750\left(1+\frac{1}{300}\right)^{90}\) - step2: Add the numbers: \(10750\left(\frac{301}{300}\right)^{90}\) - step3: Simplify: \(10750\times \frac{301^{90}}{300^{90}}\) - step4: Rewrite the expression: \(50\times 215\times \frac{301^{90}}{300^{90}}\) - step5: Rewrite the expression: \(50\times 215\times \frac{301^{90}}{50^{90}\times 6^{90}}\) - step6: Reduce the numbers: \(215\times \frac{301^{90}}{50^{89}\times 6^{90}}\) - step7: Rewrite the expression: \(5\times 43\times \frac{301^{90}}{50^{89}\times 6^{90}}\) - step8: Rewrite the expression: \(5\times 43\times \frac{301^{90}}{25^{89}\times 2^{89}\times 6^{90}}\) - step9: Rewrite the expression: \(5\times 43\times \frac{301^{90}}{5^{178}\times 2^{89}\times 6^{90}}\) - step10: Reduce the numbers: \(43\times \frac{301^{90}}{5^{177}\times 2^{89}\times 6^{90}}\) - step11: Multiply the fractions: \(\frac{43\times 301^{90}}{5^{177}\times 2^{89}\times 6^{90}}\) ### Step 1: Calculate the value of the account \( A(t) \) 1. **Calculate \( \frac{0.02}{6} \)**: \[ \frac{0.02}{6} \approx 0.003333 \] 2. **Calculate \( 1 + \frac{0.02}{6} \)**: \[ 1 + 0.003333 \approx 1.003333 \] 3. **Raise to the power of 90**: \[ (1.003333)^{90} \approx 1.349186 \] 4. **Multiply by 10750**: \[ A(t) = 10750 \times 1.349186 \approx 14503.744579 \] Rounding to the nearest cent, the value of the account is: \[ \boxed{14503.74} \] ### Step 2: Determine the initial deposit \( P \) From the compound interest formula, we can rearrange it to find \( P \): \[ P = \frac{A(t)}{\left(1+\frac{r}{n}\right)^{nt}} \] Using the values we have: - \( A(t) = 14503.744579 \) - \( r = 0.02 \) - \( n = 6 \) - \( t = 15 \) Now we can calculate \( P \): \[ P = \frac{14503.744579}{(1+\frac{0.02}{6})^{90}} \] We already calculated \( (1+\frac{0.02}{6})^{90} \approx 1.349186 \). Now we can find \( P \). Calculate the value by following steps: - step0: Calculate: \(\frac{14503.744579}{\left(1+\left(\frac{0.02}{6}\right)\right)^{90}}\) - step1: Divide the terms: \(\frac{14503.744579}{\left(1+\frac{1}{300}\right)^{90}}\) - step2: Add the numbers: \(\frac{14503.744579}{\left(\frac{301}{300}\right)^{90}}\) - step3: Convert the expressions: \(\frac{\frac{14503744579}{1000000}}{\left(\frac{301}{300}\right)^{90}}\) - step4: Use the properties of exponents: \(\frac{\frac{14503744579}{1000000}}{\frac{301^{90}}{300^{90}}}\) - step5: Multiply by the reciprocal: \(\frac{14503744579}{1000000}\times \frac{300^{90}}{301^{90}}\) - step6: Rewrite the expression: \(\frac{14503744579}{1000000}\times \frac{100^{90}\times 3^{90}}{301^{90}}\) - step7: Rewrite the expression: \(\frac{14503744579}{100^{3}}\times \frac{100^{90}\times 3^{90}}{301^{90}}\) - step8: Reduce the numbers: \(14503744579\times \frac{100^{87}\times 3^{90}}{301^{90}}\) - step9: Multiply: \(\frac{14503744579\times 100^{87}\times 3^{90}}{301^{90}}\) ### Step 2: Determine the initial deposit \( P \) Using the rearranged formula, we calculated: \[ P = \frac{14503.744579}{(1+\frac{0.02}{6})^{90}} \approx \frac{14503.744579}{1.349186} \approx 10750 \] Thus, the initial deposit made to the account is: \[ \boxed{10750} \] ### Step 3: Determine how many years the account had been accumulating interest From the problem, we know that the interest is compounded 6 times a year, and the total number of compounding periods is 90. To find the number of years \( t \): \[ t = \frac{90}{n} = \frac{90}{6} = 15 \] Thus, the account had been accumulating interest for: \[ \boxed{15} \] ### Summary of Results: - a. The value of the account: \( \boxed{14503.74} \) - b. The initial deposit made to the account: \( \boxed{10750} \) - c. The number of years the account had been accumulating interest: \( \boxed{15} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the value of the account \( A(t) \), we first plug the numbers into the formula provided: \[ A(t) = 10750\left(1+\frac{0.02}{6}\right)^{90} \] Calculating \( \frac{0.02}{6} \) gives approximately \( 0.0033333 \). Therefore, \[ A(t) = 10750 \left(1 + 0.0033333\right)^{90} \] Calculating \( 1.0033333^{90} \) results in approximately \( 1.348850425 \). Now we can calculate the final value: \[ A(t) \approx 10750 \times 1.348850425 \approx 14529.22 \] So, rounded to the nearest cent, the value of the account \( A(t) \) is approximately: **a. $14,529.22** To find the initial deposit \( P \), we notice that the final amount \( A(t) = P \left(1+\frac{r}{n}\right)^{n t} \). In this case, we need to set up the equation and solve for \( P \): \[ 10750 = P \left(1+\frac{0.02}{6}\right)^{90} \] We have already calculated \( \left(1+\frac{0.02}{6}\right)^{90} \approx 1.348850425 \), so we can isolate \( P \): \[ P = \frac{10750}{1.348850425} \approx 7965.61 \] Thus, the initial deposit made to the account is approximately: **b. $7,965.61** To determine how many years the account had been accumulating interest (\( t \)), we need to understand what \( n \) represents in this context. Since \( n \) is the number of times the interest is compounded per year, and here it is given as 6 (six times yearly), we can calculate \( t \) based on the total number of compounding periods, which is \( 90 \) as shown in the exponent: \[ t = \frac{90}{n} = \frac{90}{6} = 15 \] So the account had been accumulating interest for: **c. 15 years**

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad