Pregunta
Write an exponential decay function to model the situation. Compare the average rates of change over the given intervals. initial value: 59 decay factor: 0.9 \( 1 \leq x \leq 3 \) and \( 4 \leq x \leq 6 \) The exponential decay function to model the situation is \( f(x)=\square \).
Ask by Chadwick Thornton. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The exponential decay function is \( f(x) = 59(0.9)^x \). Over the intervals \( 1 \leq x \leq 3 \), the average rate of change is approximately -5.04, and over \( 4 \leq x \leq 6 \), it is approximately -3.68.
Solución
To model the given situation using an exponential decay function and compare the average rates of change over the specified intervals, follow the steps below:
### **1. Exponential Decay Function**
The general form of an exponential decay function is:
\[ f(x) = A \cdot (D)^x \]
Where:
- \( A \) is the initial value.
- \( D \) is the decay factor.
- \( x \) is the independent variable (e.g., time).
Given:
- **Initial Value (\( A \))**: 59
- **Decay Factor (\( D \))**: 0.9
Substituting the given values into the general form:
\[ f(x) = 59 \cdot (0.9)^x \]
**Thus, the exponential decay function is:**
\[ f(x) = 59(0.9)^x \]
### **2. Average Rate of Change**
The **average rate of change** of a function \( f(x) \) over an interval \([a, b]\) is calculated using the formula:
\[ \text{Average Rate of Change} = \frac{f(b) - f(a)}{b - a} \]
We'll calculate this for the two intervals: \( 1 \leq x \leq 3 \) and \( 4 \leq x \leq 6 \).
#### **a. Interval \( 1 \leq x \leq 3 \)**
1. **Calculate \( f(1) \):**
\[ f(1) = 59 \cdot (0.9)^1 = 59 \cdot 0.9 = 53.1 \]
2. **Calculate \( f(3) \):**
\[ f(3) = 59 \cdot (0.9)^3 = 59 \cdot 0.729 = 43.011 \]
3. **Average Rate of Change:**
\[ \frac{f(3) - f(1)}{3 - 1} = \frac{43.011 - 53.1}{2} = \frac{-10.089}{2} = -5.0445 \]
**Rounded to two decimal places:**
\[ \approx -5.04 \]
#### **b. Interval \( 4 \leq x \leq 6 \)**
1. **Calculate \( f(4) \):**
\[ f(4) = 59 \cdot (0.9)^4 = 59 \cdot 0.6561 = 38.7099 \]
2. **Calculate \( f(6) \):**
\[ f(6) = 59 \cdot (0.9)^6 = 59 \cdot 0.531441 = 31.353 \]
3. **Average Rate of Change:**
\[ \frac{f(6) - f(4)}{6 - 4} = \frac{31.353 - 38.7099}{2} = \frac{-7.3569}{2} = -3.67845 \]
**Rounded to two decimal places:**
\[ \approx -3.68 \]
### **3. Summary**
- **Exponential Decay Function:**
\[ f(x) = 59(0.9)^x \]
- **Average Rates of Change:**
- **For \( 1 \leq x \leq 3 \):**
\[ \approx -5.04 \]
- **For \( 4 \leq x \leq 6 \):**
\[ \approx -3.68 \]
This comparison shows that the average rate of decay is decreasing (i.e., becoming less negative) as \( x \) increases, which is consistent with the nature of exponential decay.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The exponential decay function to model the situation is \( f(x) = 59 \cdot (0.9)^x \). This function indicates that the value decreases by 10% for each unit increase in \( x \). Now, let’s calculate the average rates of change over the specified intervals. For \( 1 \leq x \leq 3 \), the average rate of change is \(\frac{f(3) - f(1)}{3 - 1}\), and for \( 4 \leq x \leq 6 \), it’s \(\frac{f(6) - f(4)}{6 - 4}\). You'll notice that the rate of change decreases in the second interval, highlighting the nature of exponential decay!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium