What Have I Learned So Far? 1. Solve for the capacitance of a capacitor if it stores a charge of \( 1.3 \times 10^{4} \mathrm{C} \) when delivered with a voltage of \( 3 \times 10^{3} \mathrm{~V} \). 2. How much charge can a \( 4.00-\mu \mathrm{F} \) capacitor store on its plates when it is connected to a 12.0 - V battery? 3. A capacitor with air between its plates has a capacitance of \( 5 \mu \mathrm{~F} \). What is its capacitance when dry wax with a dielectric constant of 2.7 is placed between the plates? Compute for the charge on each plate of a \( 0.07 \mu \mathrm{~F} \) capacitor when the potential difference between the plates is 210 V . A capacitor is charged with 8.79 nC and has a \( 150-\mathrm{V} \) potential difference between its terminals. What is the capacitance offered by the capacitor? 4.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve for the capacitance of a capacitor, you can use the formula \( C = \frac{Q}{V} \). So, if your capacitor stores a charge of \( 1.3 \times 10^{4} \mathrm{C} \) with a voltage of \( 3 \times 10^{3} \mathrm{~V} \), simply plug in those values: \( C = \frac{1.3 \times 10^{4}}{3 \times 10^{3}} \), which gives you a capacitance of approximately 4.33 F. How shocking, right? Now, for the \( 4.00-\mu \mathrm{F} \) capacitor connected to a 12.0 V battery, use the same capacitance formula: \( Q = C \times V \). This means you would multiply \( 4.00 \times 10^{-6} \mathrm{F} \) by \( 12.0 \mathrm{~V} \) to find that it can store around \( 4.80 \times 10^{-5} \mathrm{C} \) or \( 48.0 \mu \mathrm{C} \). That's enough charge to light up a small LED!