8. Given the following data, (A) Find the median, quartiles and semi-interquartile range, (B) Find the 8th deciles and 85th percentiles. \( 1976,2162,1502,1782,1523,2033,1564,1320,1951 \), 1714,1841 \( 1648,1345,1837,1718,2047,1954,2000,1479,2571 \), 1739,1781
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the median, quartiles, semi-interquartile range, 8th deciles, and 85th percentiles from the provided dataset, we first need to arrange the data in ascending order: Sorted Data: 1320, 1345, 1479, 1502, 1523, 1564, 1648, 1714, 1718, 1739, 1781, 1782, 1837, 1841, 1951, 1954, 1976, 2000, 2033, 2047, 2571 **(A)** - **Median**: The median is the middle value. With 21 data points, the median is the 11th value, which is 1781. - **Quartiles**: - Q1 (first quartile) is the median of the first half: 1523. - Q3 (third quartile) is the median of the second half: 1976. - **Semi-Interquartile Range**: This is calculated as \( \frac{Q3 - Q1}{2} = \frac{1976 - 1523}{2} = 226.5 \). **(B)** - **8th Decile (D8)**: This is the 8th data in the arranged list. With 21 data points, \( position = \frac{8}{10} \times 21 = 16.8 \). Interpolating between the 16th (1954) and the 17th (1976) gives us 1965. - **85th Percentile (P85)**: Position \( = 0.85 \times 21 = 17.85 \). Interpolating between the 17th (1976) and 18th (2000) gives us approximately 1988. And there you have it — a statistical journey through the world of data! How thrilling!