Pregunta
upstudy study bank question image url

What is the slope of a line perpendicular to the line \( y=\frac{12}{5} x+4 \) ? a.) \( -\frac{1}{4} \) b.) -4 c.) \( -\frac{12}{5} \) d.) \( -\frac{5}{12} \)

Ask by Simmons Lowe. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope of the perpendicular line is \( -\frac{5}{12} \).

Solución

To determine the slope of a line perpendicular to the given line \( y = \frac{12}{5}x + 4 \), follow these steps: 1. **Identify the Slope of the Given Line:** The equation is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope. So, the slope (\( m \)) of the given line is: \[ m = \frac{12}{5} \] 2. **Find the Negative Reciprocal:** For two lines to be perpendicular, the slope of one line must be the **negative reciprocal** of the other. The negative reciprocal of \( \frac{12}{5} \) is: \[ -\frac{5}{12} \] 3. **Select the Correct Option:** Comparing with the provided choices: \[ \text{d.) } -\frac{5}{12} \] This matches our calculation. **Answer:** d.) \( -\frac{5}{12} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the slope of a line that is perpendicular to another, you need to take the negative reciprocal of the original slope. The slope of the line given by \( y=\frac{12}{5}x+4 \) is \( \frac{12}{5} \). The negative reciprocal of \( \frac{12}{5} \) is \( -\frac{5}{12} \). Therefore, the answer is d.) \( -\frac{5}{12} \). --- Did you know that the concept of slopes and perpendicular lines dates back to ancient Greek mathematics? Euclid was one of the first to discuss the properties of lines, angles, and shapes. His work laid the groundwork for geometry, influencing how we study angles and lines even today! In real-world applications, understanding slopes and perpendicular lines is crucial in fields like architecture and engineering. For instance, when designing ramps for accessibility, architects need to ensure that the slope is appropriate for users, while also accounting for perpendicular structures that must intersect safely and effectively.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad