Pregunta
upstudy study bank question image url

Make a table of values and sketch the graph of the equation. \[ y=x^{2}-1 \]

Ask by Carrillo Reeves. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph \( y = x^{2} - 1 \), create a table of values, plot the points, and draw a U-shaped parabola opening upwards with its vertex at \((0, -1)\).

Solución

Certainly! Let's create a table of values for the equation \( y = x^{2} - 1 \) and then discuss how to sketch its graph. ### Table of Values Choose several \( x \)-values and compute the corresponding \( y \)-values. | \( x \) | \( y = x^{2} - 1 \) | |---------|---------------------| | -3 | \( (-3)^2 - 1 = 9 - 1 = 8 \) | | -2 | \( (-2)^2 - 1 = 4 - 1 = 3 \) | | -1 | \( (-1)^2 - 1 = 1 - 1 = 0 \) | | 0 | \( (0)^2 - 1 = 0 - 1 = -1 \) | | 1 | \( (1)^2 - 1 = 1 - 1 = 0 \) | | 2 | \( (2)^2 - 1 = 4 - 1 = 3 \) | | 3 | \( (3)^2 - 1 = 9 - 1 = 8 \) | ### Plotting the Points Using the table above, plot the points \((-3, 8)\), \((-2, 3)\), \((-1, 0)\), \((0, -1)\), \((1, 0)\), \((2, 3)\), and \((3, 8)\) on a coordinate plane. ### Sketching the Graph The equation \( y = x^{2} - 1 \) represents a **parabola** that opens **upwards** because the coefficient of \( x^{2} \) is positive. Here's how to sketch it: 1. **Vertex**: The lowest point of the parabola is the vertex. For \( y = x^{2} - 1 \), the vertex is at \( (0, -1) \). 2. **Symmetry**: The parabola is symmetric about the **y-axis** (vertical line \( x = 0 \)) because the equation contains \( x^{2} \). 3. **Plot the Points**: Use the table to plot the points accurately. 4. **Draw the Parabola**: Connect the points smoothly to form the U-shaped curve. ### Visual Representation While I can't draw an actual graph here, I can provide an approximate ASCII representation: ``` y | 8 | * * 7 | 6 | 5 | 4 | 3 | * * 2 | 1 | 0 | * * -1|-------------------------- x -3 -2 -1 0 1 2 3 ``` - The "*" symbols represent the plotted points. - The vertex is at \((0, -1)\), which is the lowest point on the graph. - The parabola opens upwards, passing through all the plotted points. ### Key Features of the Graph - **Vertex**: \( (0, -1) \) - **Axis of Symmetry**: \( x = 0 \) (the y-axis) - **Direction**: Opens upwards - **Y-intercept**: \( (0, -1) \) - **X-intercepts**: \( (-1, 0) \) and \( (1, 0) \) By plotting these points and understanding the shape of the parabola, you can accurately sketch the graph of \( y = x^{2} - 1 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To create a table of values for the equation \(y = x^2 - 1\), we can choose a range of \(x\) values and calculate the corresponding \(y\) values. Here's a simple table: | \(x\) | \(y = x^2 - 1\) | |-------|-----------------| | -3 | 8 | | -2 | 3 | | -1 | 0 | | 0 | -1 | | 1 | 0 | | 2 | 3 | | 3 | 8 | Now that we have the values, we can visualize the graph. The shape of the graph will be a parabola opening upwards, with its vertex at the point (0, -1). Given this function continuously increases on either side of the vertex, you’ll see that as \(x\) moves away from zero in both directions, \(y\) rises steeply. It would be a beautiful curve that illustrates the perfect symmetry around the y-axis!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad