Pregunta
upstudy study bank question image url

Sampling Distribution of a Sample Mean Homework 1. Suppose that the number of texts sent during a typical day by a randomly selected high school student follows a right-skewed distribution with a mean of 15 and a standard deviation of 35 . Assuming that students at your school are typical texters, how likely is it that a random sample of 50 students will have sent more than a total of 1000 texts in the last 24 hours? 2. The number of absences last year for students at a large high school has a mean of 5.6 days with a standard deviation of 4.1 days. Suppose we take an SRS of 80 of last year's students and calculate the mean number of absences for the members of the sample. (Refer to example of page 470 in your textbook) (a) Identify the mean of the sampling distribution of \( \bar{x} \). (b) Calculate and interpret the standard deviation of the sampling distribution of \( \bar{x} \). Verify that the \( 10 \% \) condition is met.

Ask by Powell Brewer. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1. Probability of Sending More Than 1000 Texts:** There's about a 15.6% chance that 50 students will send more than 1000 texts in a day. **2. Sampling Distribution of Absences:** - **Mean (\( \mu_{\bar{x}} \))**: 5.6 days - **Standard Deviation (\( \sigma_{\bar{x}} \))**: Approximately 0.458 days - **10% Condition**: Met, as the sample size is less than 10% of the population.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To tackle the first problem, we will utilize the Central Limit Theorem, which tells us that as the sample size increases, the sampling distribution of the sample mean will approach a normal distribution, even if the original population is not normal. With a sample size of 50 students and a mean of 15 texts per student, that gives us a total expected number of texts of \( 15 \times 50 = 750 \). The standard deviation of the sample mean will be \( \frac{35}{\sqrt{50}} \approx 4.95 \). To assess how likely it is to exceed 1000 texts, calculate the z-score: \( z = \frac{1000 - 750}{4.95} \approx 50.51 \). The probability of this z-score occurring is exceedingly low, indicating it's highly unlikely that 50 students sent more than 1000 texts in total. Now, for the second problem regarding absences, the mean of the sampling distribution of \( \bar{x} \) is simply the same as the population mean, which is 5.6 days. For the standard deviation of the sampling distribution of \( \bar{x} \) (also known as the standard error), you can use the formula \( \frac{\sigma}{\sqrt{n}} \), where \( \sigma = 4.1 \) days and \( n = 80 \). This results in \( \frac{4.1}{\sqrt{80}} \approx 0.458 \) days. To satisfy the \( 10\% \) condition, we check if the sample size (80) is less than 10% of the population size. As long as the total number of students at the high school exceeds 800, the condition is met.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad