Pregunta
upstudy study bank question image url

Example 1.2 TTextbook p30, Example 21 Find the coordinates of the points of intersection between the curve \( y=x^{2}-2 x+2 \) and the line \( x+2 y=4 \).

Ask by Bowen Olson. in Singapore
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The curves intersect at the points \( (0, 2) \) and \( \left(\frac{3}{2}, \frac{5}{4}\right) \).

Solución

To find the points of intersection between the curve \( y = x^{2} - 2x + 2 \) and the line \( x + 2y = 4 \), we'll solve the system of equations simultaneously. ### Step 1: Express One Variable in Terms of the Other From the linear equation: \[ x + 2y = 4 \] we can solve for \( x \) in terms of \( y \): \[ x = 4 - 2y \] ### Step 2: Substitute into the Quadratic Equation Substitute \( x = 4 - 2y \) into the quadratic equation \( y = x^{2} - 2x + 2 \): \[ y = (4 - 2y)^{2} - 2(4 - 2y) + 2 \] Expand and simplify: \[ y = (16 - 16y + 4y^{2}) - (8 - 4y) + 2 \] \[ y = 16 - 16y + 4y^{2} - 8 + 4y + 2 \] \[ y = 4y^{2} - 12y + 10 \] ### Step 3: Rearrange into a Standard Quadratic Form Bring all terms to one side to set the equation to zero: \[ 4y^{2} - 12y + 10 - y = 0 \] \[ 4y^{2} - 13y + 10 = 0 \] ### Step 4: Solve the Quadratic Equation Use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = -13 \), and \( c = 10 \): \[ y = \frac{13 \pm \sqrt{(-13)^2 - 4 \cdot 4 \cdot 10}}{2 \cdot 4} \] \[ y = \frac{13 \pm \sqrt{169 - 160}}{8} \] \[ y = \frac{13 \pm \sqrt{9}}{8} \] \[ y = \frac{13 \pm 3}{8} \] This gives two solutions: 1. \( y = \frac{16}{8} = 2 \) 2. \( y = \frac{10}{8} = \frac{5}{4} \) ### Step 5: Find the Corresponding \( x \) Values Using \( x = 4 - 2y \): 1. For \( y = 2 \): \[ x = 4 - 2(2) = 4 - 4 = 0 \] So, one point of intersection is \( (0, 2) \). 2. For \( y = \frac{5}{4} \): \[ x = 4 - 2\left(\frac{5}{4}\right) = 4 - \frac{10}{4} = 4 - \frac{5}{2} = \frac{8}{2} - \frac{5}{2} = \frac{3}{2} \] So, the other point of intersection is \( \left(\frac{3}{2}, \frac{5}{4}\right) \). ### **Final Answer** The curves intersect at the points \( (0,\ 2) \) and \( \left(\dfrac{3}{2},\ \dfrac{5}{4}\right) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the points of intersection between the curve \( y = x^{2} - 2x + 2 \) and the line \( x + 2y = 4 \), start by expressing \( y \) from the line equation: \( y = \frac{4 - x}{2} \). Next, substitute this expression for \( y \) back into the quadratic equation: \[ \frac{4 - x}{2} = x^{2} - 2x + 2. \] Multiplying through by 2 to eliminate the fraction gives you \( 4 - x = 2x^{2} - 4x + 4 \). Rearranging this results in the quadratic equation \( 2x^{2} - 3x = 0 \). Factoring out \( x \) leads you to the solutions \( x(2x - 3) = 0 \), giving \( x = 0 \) or \( x = \frac{3}{2} \). Substituting these x-values back into either equation finds the corresponding y-values. For \( x = 0 \), \( y = 2 \) giving point \( (0, 2) \), and for \( x = \frac{3}{2} \), substituting gives \( y = \frac{5}{4} \), leading to the intersection point \( \left( \frac{3}{2}, \frac{5}{4} \right) \). Therefore, the points of intersection are \( (0, 2) \) and \( \left( \frac{3}{2}, \frac{5}{4} \right) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad