Pregunta
Which type of function does this data describe? \begin{tabular}{c|ccccc}x & -2 & -1 & 0 & 1 & 2 \\ \hline y & 144 & 72 & 36 & 18 & 9\end{tabular} A. Quadratic B. Exponential C. Linear
Ask by Harris Sullivan. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The data follows an exponential pattern, so the answer is **B. Exponential**.
Solución
To determine the type of function described by the given data, let's analyze the pattern of the \( y \)-values as \( x \) changes:
\[
\begin{tabular}{c|ccccc}
x & -2 & -1 & 0 & 1 & 2 \\ \hline
y & 144 & 72 & 36 & 18 & 9
\end{tabular}
\]
**Step 1: Examine the Ratios Between Consecutive \( y \)-Values**
- From \( x = -2 \) to \( x = -1 \): \( \frac{72}{144} = \frac{1}{2} \)
- From \( x = -1 \) to \( x = 0 \): \( \frac{36}{72} = \frac{1}{2} \)
- From \( x = 0 \) to \( x = 1 \): \( \frac{18}{36} = \frac{1}{2} \)
- From \( x = 1 \) to \( x = 2 \): \( \frac{9}{18} = \frac{1}{2} \)
The ratio between consecutive \( y \)-values is consistently \( \frac{1}{2} \).
**Step 2: Identify the Type of Function**
- **Linear Function:** Requires a constant difference between consecutive \( y \)-values. Here, the differences are halving, so it's not linear.
- **Quadratic Function:** Requires a constant second difference. Calculating:
- First differences: \( -72, -36, -18, -9 \)
- Second differences: \( 36, 18, 9 \) (not constant)
- **Exponential Function:** Characterized by a constant ratio between consecutive \( y \)-values, which matches our observations.
**Conclusion:**
The data follows an **exponential** pattern, specifically \( y = 36 \left(\frac{1}{2}\right)^x \).
**Answer:**
**B. Exponential**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The data in the table shows a clear pattern of halving the previous y-value as the x-value increases. This suggests an exponential decay function, which is characterized by a constant ratio of change between successive values. Specifically, if you examine the values, you'll notice that each value of y is half of the previous one when you move from left to right along the x-axis: 144 to 72 to 36 to 18 to 9. This consistent halving is a hallmark of exponential functions!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium