Pregunta
upstudy study bank question image url

8. Ivy earns \( \$ 25 \) an hour tutoring students and \( \$ 12 \) an hour working at the library. She wants to earn at least \( \$ 150 \) in a week, but is not able to work for more than 8 hours. (i) Write down an inequality to represent the above information. Define the variables used. (ii) State all the possible combinations of hours that Ivy could tutor or work at the library.

Ask by Riley Greene. in Singapore
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Possible combinations of hours Ivy could tutor or work at the library are: - 6 hours tutoring and 2 hours at the library - 7 hours tutoring and 1 hour at the library - 8 hours tutoring and 0 hours at the library

Solución

To solve this problem, we will define the variables and then set up the inequalities based on the conditions provided. ### Part (i): Define Variables and Write Inequalities Let: - \( x \) = number of hours Ivy tutors students - \( y \) = number of hours Ivy works at the library From the problem, we have the following conditions: 1. Ivy earns \( \$ 25 \) per hour tutoring, so her earnings from tutoring can be represented as \( 25x \). 2. Ivy earns \( \$ 12 \) per hour working at the library, so her earnings from the library can be represented as \( 12y \). 3. Ivy wants to earn at least \( \$ 150 \), which gives us the inequality: \[ 25x + 12y \geq 150 \] 4. Ivy cannot work more than 8 hours in total, which gives us the inequality: \[ x + y \leq 8 \] Thus, the inequalities representing the situation are: 1. \( 25x + 12y \geq 150 \) 2. \( x + y \leq 8 \) ### Part (ii): Possible Combinations of Hours To find the possible combinations of hours that Ivy could tutor or work at the library, we need to solve the system of inequalities. We will analyze the inequalities to find the feasible region. 1. **From the first inequality** \( 25x + 12y \geq 150 \): - Rearranging gives us \( y \geq \frac{150 - 25x}{12} \). 2. **From the second inequality** \( x + y \leq 8 \): - Rearranging gives us \( y \leq 8 - x \). Next, we will find the intersection points of these lines to determine the feasible region. Let's solve the equations: 1. \( 25x + 12y = 150 \) 2. \( x + y = 8 \) We can solve these equations simultaneously. ### Solving the System of Equations 1. From \( x + y = 8 \), we can express \( y \) in terms of \( x \): \[ y = 8 - x \] 2. Substitute \( y \) into the first equation: \[ 25x + 12(8 - x) = 150 \] Simplifying this: \[ 25x + 96 - 12x = 150 \] \[ 13x + 96 = 150 \] \[ 13x = 54 \] \[ x = \frac{54}{13} \approx 4.15 \] 3. Substitute \( x \) back to find \( y \): \[ y = 8 - \frac{54}{13} = \frac{104 - 54}{13} = \frac{50}{13} \approx 3.85 \] Now we have one intersection point: \( \left( \frac{54}{13}, \frac{50}{13} \right) \). ### Finding the Boundary Points Next, we need to check the boundary points where \( x \) and \( y \) are non-negative and satisfy both inequalities. 1. **When \( x = 0 \)**: - From \( 25(0) + 12y \geq 150 \) → \( 12y \geq 150 \) → \( y \geq 12.5 \) (not possible since \( y \) must be ≤ 8). 2. **When \( y = 0 \)**: - From \( 25x + 12(0) \geq 150 \) → \( 25x \geq 150 \) → \( x \geq 6 \). - From \( x + 0 \leq 8 \) → \( x \leq 8 \). - Thus, \( x \) can be between \( 6 \) and \( 8 \) (i.e., \( 6 \leq x \leq 8 \)). ### Summary of Possible Combinations The possible combinations of hours that Ivy could tutor or work at the library are: - \( (x, y) \) such that: - \( 6 \leq x \leq 8 \) - \( y = 8 - x \) This means: - If \( x = 6 \), then \( y = 2 \). - If \( x = 7 \), then \( y = 1 \). - If \( x = 8 \), then \( y = 0 \). Thus, the possible combinations of hours are: - \( (6, 2) \) - \( (7, 1) \) - \( (8, 0) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let \( x \) represent the number of hours Ivy spends tutoring, and \( y \) represent the hours she works at the library. The inequality representing her earnings can be expressed as: \[ 25x + 12y \geq 150 \] Additionally, the total hours she works cannot exceed 8 hours, which can be represented as: \[ x + y \leq 8 \] Now, for the second part, we can determine the combinations of hours by examining the inequalities. Given the constraints, one can consider values within the bounds set by the inequalities. For example, if Ivy tutors for 0 hours, she would need to work 12.5 hours at the library, which is not allowed. If she tutors for 6 hours, she can work for 2 hours at the library, and that brings her to exactly \( \$ 150 \). Similarly, she could also tutor for 5 hours and work 3 hours at the library, which would net her exactly \( \$ 147 \). By solving the inequalities or testing values, we would derive pairs like: - \( (0, 8) \) - \( (6, 2) \) - \( (5, 3) \) - \( (8, 0) \) This can be done until all combinations that satisfy both inequalities are documented!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad