Steven says, "I would rather have \( \frac{5}{9} \) of \( \$ 72 \) than \( \frac{4}{6} \) because I will get more to spend." Is he correct?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find out if Steven is correct, let's calculate both amounts he mentions. First, for \( \frac{5}{9} \) of \( \$72 \): \[ \frac{5}{9} \times 72 = \frac{360}{9} = \$40 \] Next, we simplify \( \frac{4}{6} \): \[ \frac{4}{6} = \frac{2}{3} \] Now calculate \( \frac{2}{3} \) of \( \$72 \): \[ \frac{2}{3} \times 72 = \frac{144}{3} = \$48 \] So, Steven would get \( \$40 \) from \( \frac{5}{9} \) of \( \$72 \) and \( \$48 \) from \( \frac{4}{6} \). Therefore, Steven is not correct; he would actually get more money from \( \frac{4}{6} \) of \( \$72 \).