Pregunta
upstudy study bank question image url

\( \square x= \) width length \( =x+3 \)

Ask by Parsons Fowler. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Width is \( x \) and length is \( x + 3 \).

Solución

It looks like you're describing a geometric shape—possibly a rectangle—where you have: - **Width**: \( x \) - **Length**: \( x + 3 \) Assuming you're referring to a **rectangle**, here's how you can work with these dimensions: ### 1. Area of the Rectangle The area (\( A \)) of a rectangle is calculated by multiplying its width by its length. \[ A = \text{Width} \times \text{Length} = x \times (x + 3) = x^2 + 3x \] ### 2. Perimeter of the Rectangle The perimeter (\( P \)) is the sum of all sides of the rectangle. Since opposite sides are equal: \[ P = 2 \times (\text{Width} + \text{Length}) = 2(x) + 2(x + 3) = 2x + 2x + 6 = 4x + 6 \] ### 3. Solving for \( x \) If you have additional information, such as the area or perimeter, you can solve for \( x \). For example: #### **a. Given the Area** Suppose the area is 30 square units: \[ x^2 + 3x = 30 \\ x^2 + 3x - 30 = 0 \] Solve the quadratic equation: \[ x = \frac{-3 \pm \sqrt{9 + 120}}{2} = \frac{-3 \pm \sqrt{129}}{2} \] Since length can't be negative: \[ x = \frac{-3 + \sqrt{129}}{2} \approx \frac{-3 + 11.36}{2} \approx 4.18 \text{ units} \] #### **b. Given the Perimeter** Suppose the perimeter is 22 units: \[ 4x + 6 = 22 \\ 4x = 16 \\ x = 4 \text{ units} \] Then, the length would be: \[ x + 3 = 4 + 3 = 7 \text{ units} \] ### 4. Visual Representation Here's a simple diagram to illustrate the rectangle: ``` +---------------------+ | | | | Length = x + 3 | | +---------------------+ Width = x ``` ### 5. Summary - **Width**: \( x \) - **Length**: \( x + 3 \) - **Area**: \( x^2 + 3x \) - **Perimeter**: \( 4x + 6 \) If you provide more context or additional information (like a specific value for area or perimeter), I can help you solve for \( x \) or address any other related questions you might have!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In the world of geometry, the relationship between the width and length of rectangles is quite fascinating! Did you know that the area of a rectangle is simply calculated by multiplying the length by the width? So, in your case, if the width is represented by \(x\) and the length by \(x + 3\), the area would be \(x(x + 3)\). If you're ever curious, you can expand this to \(x^2 + 3x\), which can then help with further calculations! Drawing a diagram can also be a game-changer when dealing with such equations. Visualizing your variables can help prevent errors. For example, when you write \( \square x \) for the width, make sure to clearly indicate it's \( x \); sometimes mixing symbols can lead to confusion! Always double-check that equations are set up properly before diving into calculations – it saves time and avoids mistakes!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad