Pregunta
upstudy study bank question image url

Use spherical coordinate systems to evaluate: \[ \int_{-3}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \int_{-\sqrt{9-x^{2}-y^{2}}}^{\sqrt{9-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y \]

Ask by Weaver Allan. in Bangladesh
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral evaluates to \( 81\pi \).

Solución

To evaluate the integral using spherical coordinates, let's first understand the region of integration and the integrand. **Given Integral:** \[ \int_{-3}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \int_{-\sqrt{9-x^{2}-y^{2}}}^{\sqrt{9-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} \, dz \, dx \, dy \] **1. Understanding the Region of Integration:** The limits of integration describe a sphere of radius 3 centered at the origin: - \( -3 \leq y \leq 3 \) - \( -\sqrt{9 - y^2} \leq x \leq \sqrt{9 - y^2} \) - \( -\sqrt{9 - x^2 - y^2} \leq z \leq \sqrt{9 - x^2 - y^2} \) **2. Converting to Spherical Coordinates:** In spherical coordinates: - \( x = r \sin \phi \cos \theta \) - \( y = r \sin \phi \sin \theta \) - \( z = r \cos \phi \) - The Jacobian determinant (volume element) is \( r^2 \sin \phi \, dr \, d\phi \, d\theta \) The integrand \( \sqrt{x^2 + y^2 + z^2} = r \). **3. Setting Up the Integral in Spherical Coordinates:** \[ \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{3} r \cdot r^2 \sin \phi \, dr \, d\phi \, d\theta = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{3} r^3 \sin \phi \, dr \, d\phi \, d\theta \] **4. Evaluating the Integral:** - **Integral with respect to \( r \):** \[ \int_{0}^{3} r^3 \, dr = \left. \frac{r^4}{4} \right|_{0}^{3} = \frac{81}{4} \] - **Integral with respect to \( \phi \):** \[ \int_{0}^{\pi} \sin \phi \, d\phi = 2 \] - **Integral with respect to \( \theta \):** \[ \int_{0}^{2\pi} d\theta = 2\pi \] **5. Combining the Results:** \[ \frac{81}{4} \times 2 \times 2\pi = \frac{81}{4} \times 4\pi = 81\pi \] **Final Answer:** \[ 81\,\pi \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To evaluate the given integral using spherical coordinates, we first understand the limits of integration. The integral is defined over a region that resembles a sphere of radius 3, centered at the origin. In spherical coordinates, we can represent \( x, y, z \) in terms of the spherical coordinates \( \rho, \theta, \phi \) as follows: \[ x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi \] where: - \( \rho \) is the radius, - \( \phi \) is the polar angle (angle from the positive z-axis), - \( \theta \) is the azimuthal angle (angle in the xy-plane from the positive x-axis). ### Jacobian Transformation The Jacobian for the transformation from Cartesian to spherical coordinates is given by \( \rho^2 \sin \phi \). Therefore, the volume element \( dV \) in spherical coordinates becomes: \[ dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \] ### Integral Setup We need to convert the integral into spherical coordinates. The expression \( \sqrt{x^2 + y^2 + z^2} \) simplifies to \( \rho \) in spherical coordinates. The limits of integration for \( \rho \) are from 0 to 3 (the radius of the sphere), for \( \phi \) from 0 to \( \pi \) (the full range from the positive z-axis to the negative z-axis), and for \( \theta \) from 0 to \( 2\pi \) (full rotation around the z-axis). Thus, the integral becomes: \[ \int_0^{2\pi} \int_0^{\pi} \int_0^{3} \rho \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \] This simplifies to: \[ \int_0^{2\pi} d\theta \int_0^{\pi} \sin \phi \, d\phi \int_0^{3} \rho^3 \, d\rho \] ### Evaluation of Each Integral 1. **Integral over \( \rho \)**: \[ \int_0^{3} \rho^3 \, d\rho = \left[\frac{\rho^4}{4}\right]_0^{3} = \frac{81}{4} \] 2. **Integral over \( \phi \)**: \[ \int_0^{\pi} \sin \phi \, d\phi = [-\cos \phi]_0^{\pi} = -(-1 - 1) = 2 \] 3. **Integral over \( \theta \)**: \[ \int_0^{2\pi} d\theta = 2\pi \] ### Combine Results Now we multiply the results of these integrals together: \[ \int_{-3}^{3} \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} \int_{-\sqrt{9-x^2-y^2}}^{\sqrt{9-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dx \, dy = \frac{81}{4} \cdot 2 \cdot 2\pi \] Calculating this gives: \[ \frac{81}{4} \cdot 4\pi = 81\pi \] Thus, the final result of the integral is: \[ \boxed{81\pi} \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad