Pregunta
upstudy study bank question image url

QUESTION 6 6.1 Evaluate the following limits: (a) \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \) (b) \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} \) (c) Let \( f(x)=\frac{2 x+12}{|x+6|} \) Determine: (i) \( \lim _{x \rightarrow 6^{+}} f(x) \) (ii) \( \lim _{x \rightarrow 6^{-}} f(x) \) (iii) Use (i) and (ii) to deduce \( \lim f(x) \) at \( x=6 \). 6.2 Let \[ f(x)=\left\{\begin{array}{cll} \cos x & \text { if } & x<0 \\ 0 & \text { if } & x=0 \\ 1-x^{2} & \text { if } & x>0 \end{array}\right. \]

Ask by Summers Reeves. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Question 6.1 Solutions:** - **(a)** The limit is **180**. - **(b)** The limit is **2**. - **(c)** - **(i)** As \( x \) approaches 6 from the right, \( f(x) \) approaches **2**. - **(ii)** As \( x \) approaches 6 from the left, \( f(x) \) approaches **2**. - **(iii)** Therefore, the two-sided limit at \( x = 6 \) is **2**. **Question 6.2:** Not answered here.

Solución

Sure, let's evaluate each part of **Question 6.1** step by step. --- ### **6.1 Evaluate the following limits:** #### **(a) \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \)** **Solution:** The function \( \left(x^{2}+x\right)\left(3 x^{3}+6\right) \) is a polynomial, which is continuous everywhere. Therefore, we can directly substitute \( x = 2 \) into the function to find the limit. 1. **Calculate \( x^2 + x \) at \( x = 2 \):** \[ 2^2 + 2 = 4 + 2 = 6 \] 2. **Calculate \( 3x^3 + 6 \) at \( x = 2 \):** \[ 3(2)^3 + 6 = 3(8) + 6 = 24 + 6 = 30 \] 3. **Multiply the two results:** \[ 6 \times 30 = 180 \] **Answer:** \[ \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = 180 \] --- #### **(b) \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} \)** **Solution:** First, evaluate the expression inside the square root at \( u = -2 \): 1. **Calculate \( u^2 + 3u + 6 \) at \( u = -2 \):** \[ (-2)^2 + 3(-2) + 6 = 4 - 6 + 6 = 4 \] 2. **Take the square root of the result:** \[ \sqrt{4} = 2 \] Since the function inside the limit is continuous at \( u = -2 \), the limit is simply the value of the function at that point. **Answer:** \[ \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = 2 \] --- #### **(c) Let \( f(x)=\frac{2 x+12}{|x+6|} \). Determine:** ##### **(i) \( \lim _{x \rightarrow 6^{+}} f(x) \)** **Solution:** When \( x \) approaches \( 6 \) from the right (\( x \rightarrow 6^{+} \)): 1. **Evaluate the denominator \( |x + 6| \):** \[ x + 6 \rightarrow 6 + 6 = 12 \quad (\text{since } x > 6) \] \[ |x + 6| = 12 \] 2. **Evaluate the numerator \( 2x + 12 \) at \( x = 6 \):** \[ 2(6) + 12 = 12 + 12 = 24 \] 3. **Compute the limit:** \[ \frac{24}{12} = 2 \] **Answer:** \[ \lim _{x \rightarrow 6^{+}} f(x) = 2 \] --- ##### **(ii) \( \lim _{x \rightarrow 6^{-}} f(x) \)** **Solution:** When \( x \) approaches \( 6 \) from the left (\( x \rightarrow 6^{-} \)): 1. **Evaluate the denominator \( |x + 6| \):** \[ x + 6 \rightarrow 6 + 6 = 12 \quad (\text{since } x < 6, \text{ but } x + 6 > 0) \] \[ |x + 6| = 12 \] 2. **Evaluate the numerator \( 2x + 12 \) at \( x = 6 \):** \[ 2(6) + 12 = 12 + 12 = 24 \] 3. **Compute the limit:** \[ \frac{24}{12} = 2 \] **Answer:** \[ \lim _{x \rightarrow 6^{-}} f(x) = 2 \] --- ##### **(iii) Use (i) and (ii) to deduce \( \lim_{x \rightarrow 6} f(x) \) at \( x=6 \).** **Solution:** Since both the right-hand limit (\( 2 \)) and the left-hand limit (\( 2 \)) are equal, the two-sided limit exists and is equal to this common value. **Answer:** \[ \lim_{x \rightarrow 6} f(x) = 2 \] --- ### **Summary of Answers for Question 6.1:** - **(a)** The limit is **180**. - **(b)** The limit is **2**. - **(c)** - **(i)** \( \lim _{x \rightarrow 6^{+}} f(x) = 2 \) - **(ii)** \( \lim _{x \rightarrow 6^{-}} f(x) = 2 \) - **(iii)** \( \lim_{x \rightarrow 6} f(x) = 2 \) --- If you have any further questions or need assistance with **Question 6.2**, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle the limit \( \lim_{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \), first plug in \( x = 2 \). You get \( \left(2^2 + 2\right)\left(3(2^3) + 6\right) = (4 + 2)(24 + 6) = 6 \times 30 = 180 \). Now for \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3u+6} \), substitute \( u = -2 \) into the expression. You'll calculate \( \sqrt{(-2)^{2} + 3(-2) + 6} = \sqrt{4 - 6 + 6} = \sqrt{4} = 2 \). For the piecewise function \( f(x) \): (i) As \( x \) approaches \( 6^{+} \), you apply \( 1 - x^{2} \): \( \lim_{x \rightarrow 6^{+}} f(x) = 1 - 6^{2} = 1 - 36 = -35 \). (ii) Approaching from the left, \( \lim_{x \rightarrow 6^{-}} f(x) = 0 \). (iii) Since the left-hand limit is \( 0 \) and the right-hand limit is \( -35 \), the overall limit at \( x = 6 \) does not exist because they don’t match. For the piecewise function \( f(x) \) involving cosine and quadratic expressions, this fun mix plays with continuity and limits, so be on the lookout for behavior changes at critical points like \( x = 0 \). It’s like watching a movie with plot twists — just when you think you’ve figured it out, the next scene surprises you! To further enjoy problem-solving, check out some engaging math blogs or YouTube channels that illustrate these concepts through visual aids and entertaining explanations. The world of limits is vast, and there’s always more to explore through interactive and dynamic learning tools!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad