Pregunta
8. Order the numbers from greatest to least. \begin{tabular}{|l}\( \equiv-\sqrt{12} \) \\ \( \equiv \sqrt{15} \) \\ \( \equiv-4.3 \) \\ \( \equiv \frac{14}{5} \) \\ \( \equiv 3 \)\end{tabular}
Ask by Higgins Cole. in the United States
Jan 17,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The numbers ordered from greatest to least are:
\[
\sqrt{15}, \quad 3, \quad \frac{14}{5}, \quad -\sqrt{12}, \quad -4.3
\]
Solución
To order the given numbers from greatest to least, let's first evaluate each number:
1. **\(-\sqrt{12}\)**
\[
\sqrt{12} \approx 3.464 \\
-\sqrt{12} \approx -3.464
\]
2. **\(\sqrt{15}\)**
\[
\sqrt{15} \approx 3.873
\]
3. **\(-4.3\)**
\[
-4.3 \text{ is already in decimal form.}
\]
4. **\(\frac{14}{5}\)**
\[
\frac{14}{5} = 2.8
\]
5. **\(3\)**
\[
3 \text{ is already in decimal form.}
\]
Now, let's list the numbers with their approximate decimal values:
- \(\sqrt{15} \approx 3.873\)
- \(3 = 3.0\)
- \(\frac{14}{5} = 2.8\)
- \(-\sqrt{12} \approx -3.464\)
- \(-4.3 = -4.3\)
**Ordered from Greatest to Least:**
1. \(\sqrt{15}\) ≈ **3.873**
2. \(3\) ≈ **3.0**
3. \(\frac{14}{5}\) = **2.8**
4. \(-\sqrt{12}\) ≈ **-3.464**
5. \(-4.3\) = **-4.3**
**Final Order:**
\[
\sqrt{15}, \quad 3, \quad \frac{14}{5}, \quad -\sqrt{12}, \quad -4.3
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To order the numbers from greatest to least, let's first convert the expressions into decimal form or approximate them: 1. \( \equiv -\sqrt{12} \approx -3.46 \) 2. \( \equiv \sqrt{15} \approx 3.87 \) 3. \( \equiv -4.3 = -4.3 \) 4. \( \equiv \frac{14}{5} = 2.8 \) 5. \( \equiv 3 = 3 \) Now ordering these from greatest to least: 1. \( \sqrt{15} \approx 3.87 \) 2. \( 3 \) 3. \( \frac{14}{5} = 2.8 \) 4. \( -\sqrt{12} \approx -3.46 \) 5. \( -4.3 \) So, the complete ordered list is: \( \sqrt{15}, 3, \frac{14}{5}, -\sqrt{12}, -4.3 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium