Pregunta
upstudy study bank question image url

the strategies listed, which is most appropriate for solving \( q^{2}-10 q=20 \) ? square root property zero product property What are the square Simplify the radical. Enter your answers in the boxes. The solutions are \( \square \pm \square . ~ \)

Ask by Morgan Turnbull. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( 5 \pm 3\sqrt{5} \).

Solución

To solve the quadratic equation \( q^{2} - 10q = 20 \), let's follow the appropriate steps and fill in the solutions accordingly. ### 1. **Choose the Appropriate Strategy** Given the equation \( q^{2} - 10q = 20 \), the **best strategy** to solve this is **completing the square**, which is closely related to the **square root property**. This method is more suitable here than the zero product property because the equation isn't initially factored. ### 2. **Solve the Equation by Completing the Square** Let's solve the equation step by step: 1. **Start with the original equation:** \[ q^2 - 10q = 20 \] 2. **Move the constant term to the other side:** \[ q^2 - 10q - 20 = 0 \quad \text{(Alternatively, keep the equation as } q^2 - 10q = 20 \text{)} \] 3. **Complete the square:** - Take half of the coefficient of \( q \): \( \frac{-10}{2} = -5 \). - Square it: \( (-5)^2 = 25 \). - Add 25 to both sides to complete the square: \[ q^2 - 10q + 25 = 20 + 25 \] \[ (q - 5)^2 = 45 \] 4. **Apply the square root property:** \[ q - 5 = \pm \sqrt{45} \] 5. **Simplify the radical:** \[ \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} \] 6. **Solve for \( q \):** \[ q = 5 \pm 3\sqrt{5} \] ### 3. **Enter the Solutions in the Boxes** The solutions can be expressed as: \[ \boxed{5 \pm 3\sqrt{5}} \] So, filling in the blanks: - First box: **5** - Second box: **3√5** **Final Answer:** \[ q = \boxed{5} \pm \boxed{3\sqrt{5}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( q^{2}-10q-20=0 \), it would be best to use the square root property after rearranging the equation into the form \( (q - 5)^2 = 45 \). This way, you can take the square root of both sides, leading to the solutions \( q - 5 = \pm \sqrt{45} \). Simplifying \( \sqrt{45} \) gives \( 3\sqrt{5} \), so the solutions boil down to \( q = 5 \pm 3\sqrt{5} \). These types of quadratic equations can show up in real-world applications like physics when calculating projectile motion or economics in profit calculations. Understanding how to manipulate these equations is crucial! For instance, if you’re tackling a problem involving the trajectory of a ball, knowing how to efficiently use the square root property can save you time and help ensure you're on target—quite literally!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad