\( \frac { a } { a x - 1 } + \frac { b } { b u - 1 } - a + b = 0 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve for \( a \) and \( b \) in the equation \( \frac { a } { a x - 1 } + \frac { b } { b u - 1 } - a + b = 0 \), we can start by isolating the fractions: 1. Rewrite the equation to group the terms involving \( a \) and \( b \): \[ \frac { a } { a x - 1 } + \frac { b } { b u - 1 } = a - b \] 2. Find a common denominator for the left-hand side, which is \( (a x - 1)(b u - 1) \): \[ \frac { a(b u - 1) + b(a x - 1) }{(a x - 1)(b u - 1)} = a - b \] 3. Clear the denominator by multiplying both sides by \( (a x - 1)(b u - 1) \): \[ a(b u - 1) + b(a x - 1) = (a - b)(a x - 1)(b u - 1) \] 4. Expand both sides and simplify to express everything in terms of \( a \) and \( b \). Through this process, you can explore specific values for \( x \) and \( u \) to begin solving for \( a \) and \( b \). This method leads to handy insights about the relationships between these variables, emphasizing how algebraic manipulation is an essential tool in solving problems with multiple variables!