Pregunta
Solve and check the following linear equation \( 5=4(x-2)-(x-7) \) What is the solution? Select the correct choice below and
Ask by Ortega Dunn. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 2 \)
Solución
Sure, let's solve and verify the linear equation step by step:
\[
5 = 4(x - 2) - (x - 7)
\]
### Step 1: Expand the Equation
First, distribute the numbers outside the parentheses:
\[
5 = 4 \cdot x - 4 \cdot 2 - 1 \cdot x + 1 \cdot 7
\]
\[
5 = 4x - 8 - x + 7
\]
### Step 2: Combine Like Terms
Combine the terms containing \( x \) and the constant terms:
\[
4x - x = 3x
\]
\[
-8 + 7 = -1
\]
So, the equation simplifies to:
\[
5 = 3x - 1
\]
### Step 3: Solve for \( x \)
Add 1 to both sides to isolate the term with \( x \):
\[
5 + 1 = 3x
\]
\[
6 = 3x
\]
Now, divide both sides by 3:
\[
x = \frac{6}{3}
\]
\[
x = 2
\]
### Step 4: Verify the Solution
Plug \( x = 2 \) back into the original equation to ensure it satisfies both sides:
\[
5 = 4(2 - 2) - (2 - 7)
\]
\[
5 = 4(0) - (-5)
\]
\[
5 = 0 + 5
\]
\[
5 = 5
\]
Since both sides are equal, \( x = 2 \) is the correct solution.
### **Answer:**
\( x = 2 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the equation \( 5 = 4(x-2) - (x-7) \), start by expanding and simplifying: 1. Distribute on the right: \( 5 = 4x - 8 - x + 7 \) 2. Combine like terms: \( 5 = (4x - x) + (-8 + 7) \) \( 5 = 3x - 1 \) 3. Add 1 to both sides: \( 6 = 3x \) 4. Divide by 3: \( x = 2 \) To check the solution, plug back \( x = 2 \) into the original equation: \( 5 = 4(2-2) - (2-7) \) This simplifies to: \( 5 = 0 + 5 \) Since both sides are equal, the solution checks out! The solution is \( x = 2 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium