Pregunta
Solve \( x^{2}=-12 x-32 \) by factoring. a) Rewrite \( x^{2}=-12 x-32 \) in factored form. b) The solution set is: \( \{\square=0 \) > Next Question
Ask by Nguyen Knight. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
a) \( (x + 8)(x + 4) = 0 \)
b) The solution set is \( \{-8, -4\} \).
Solución
Sure, let's solve the quadratic equation \( x^{2} = -12x -32 \) by factoring step by step.
---
### **a) Rewrite \( x^{2} = -12x -32 \) in Factored Form**
1. **Bring All Terms to One Side:**
Start by moving all terms to the left side of the equation to set it to zero.
\[
x^{2} + 12x + 32 = 0
\]
2. **Factor the Quadratic:**
We need to find two numbers that multiply to **32** (the constant term) and add up to **12** (the coefficient of the middle term).
- The numbers **8** and **4** satisfy this condition because:
\[
8 \times 4 = 32 \quad \text{and} \quad 8 + 4 = 12
\]
3. **Write the Factored Form:**
Using these numbers, the equation can be factored as:
\[
(x + 8)(x + 4) = 0
\]
---
### **b) The Solution Set**
To find the values of \( x \) that satisfy the equation, set each factor equal to zero and solve for \( x \).
1. **First Factor:**
\[
x + 8 = 0 \quad \Rightarrow \quad x = -8
\]
2. **Second Factor:**
\[
x + 4 = 0 \quad \Rightarrow \quad x = -4
\]
3. **Solution Set:**
\[
\{\, -8,\ -4 \,\}
\]
---
**Final Answer:**
- **a)** The factored form is \( (x + 8)(x + 4) = 0 \).
- **b)** The solution set is \( \{-8,\ -4\} \).
---
> **Next Question**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve the equation \( x^{2} = -12x - 32 \), we can first rearrange it into standard form: \( x^{2} + 12x + 32 = 0 \). Now, we look for two numbers that multiply to \( 32 \) and add to \( 12 \). Those numbers are \( 4 \) and \( 8 \). Thus, we can factor the equation as \( (x + 4)(x + 8) = 0 \). To find the solution set, we set each factor equal to zero: \( x + 4 = 0 \) and \( x + 8 = 0 \). This leads to the solutions \( x = -4 \) and \( x = -8 \), making the solution set \( \{-4, -8\} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium