Simplify the expression using the power rule. \[ \left(x^{14}\right)^{7} \] \( \left(x^{14}\right)^{7}=\square \) (Type exponential notation with positive exponents.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Using the power rule, which states that \((a^m)^n = a^{m \cdot n}\), we can simplify the expression \(\left(x^{14}\right)^{7}\) by multiplying the exponents: \[ \left(x^{14}\right)^{7} = x^{14 \cdot 7} = x^{98}. \] So, the simplified expression is \(x^{98}\). It's always fun to remember that the power rule is a fundamental part of working with exponents, making it easier to handle larger expressions without getting bogged down in complexity. Plus, mastering these rules can help you tackle higher-level math problems with confidence!