Pregunta
upstudy study bank question image url

10 Consider \( (C) \) a circle of center \( O \) and of radius \( R \). \( [O A] \) and \( [O B] \) are two perpendicular radii of \( (C) \). Consider \( C \) a point of the major arc \( \overparen{A B} \). The tangents at \( A \) and \( C \) to this circle intersect at \( M \). The line ( \( C M) \) cuts the line \( (O B) \) at \( P \). Let \( D \) be the orthogonal projection of \( M \) on \( (O B) \). \( 1^{\circ} \) Show that the triangle \( P M O \) is isosceles of main vertex \( P \). \( 2^{\circ} \) Show that \( O P M=2 \widehat{A O M} \). \( 3^{\circ} \) Show that the points \( O, D, C \) and \( M \) are on the same circle . \( 4^{\circ} \) Show that the quadrilateral \( O C D M \) is an isosceles trapezoid.

Ask by Fernandez Ford. in Lebanon
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \triangle PMO \) is isosceles with \( P \) as the main vertex. **Simplified Answer:** \( \triangle PMO \) is isosceles with \( P \) as the main vertex.

Solución

Let's analyze the given geometric configuration step by step to prove each part of the problem. ### **Given:** - Circle \( (C) \) with center \( O \) and radius \( R \). - Radii \( [OA] \) and \( [OB] \) are perpendicular. - \( C \) is a point on the major arc \( \overparen{AB} \). - Tangents at points \( A \) and \( C \) intersect at point \( M \). - Line \( CM \) intersects \( OB \) at point \( P \). - \( D \) is the orthogonal projection of \( M \) onto \( OB \). ### **Problem 1: Show that the triangle \( \triangle PMO \) is isosceles with main vertex \( P \).** **Proof:** 1. **Coordinate System Setup:** - Place \( O \) at the origin \((0, 0)\). - Let \( OA \) lie along the positive \( x \)-axis, so \( A = (R, 0) \). - Since \( [OA] \) and \( [OB] \) are perpendicular, \( B = (0, R) \). 2. **Coordinates of Point \( C \):** - Let \( C \) be at an angle \( \theta \) from \( OA \), where \( \theta > 90^\circ \) (since \( C \) is on the major arc \( \overparen{AB} \)). - Thus, \( C = (R \cos \theta, R \sin \theta) \). 3. **Equations of the Tangents:** - **Tangent at \( A \):** Since \( OA \) is along the \( x \)-axis, the tangent at \( A \) is vertical: \( x = R \). - **Tangent at \( C \):** The slope of \( OC \) is \( \tan \theta \), so the slope of the tangent at \( C \) is \( -\cot \theta \). - Equation: \( y - R \sin \theta = -\cot \theta (x - R \cos \theta) \). 4. **Finding Point \( M \):** - Intersection of the tangents: Set \( x = R \) in the tangent at \( C \): \[ y - R \sin \theta = -\cot \theta (R - R \cos \theta) \] \[ y = R \sin \theta + R \frac{\cos \theta (1 - \cos \theta)}{\sin \theta} = \frac{R (1 - \cos \theta)}{\sin \theta} \] - Therefore, \( M = \left(R, \frac{R (1 - \cos \theta)}{\sin \theta}\right) \). 5. **Finding Point \( P \):** - Line \( CM \) has slope \( -\cot \theta \). - Equation of \( CM \): \( y = -\cot \theta \cdot x + \frac{R}{\sin \theta} \). - Intersection with \( OB \) (\( x = 0 \)): \( P = \left(0, \frac{R}{\sin \theta}\right) \). 6. **Calculating Distances:** - \( PO = \frac{R}{\sin \theta} \). - \( PM \): \[ PM = \sqrt{R^2 + \left(\frac{R (1 - \cos \theta)}{\sin \theta} - \frac{R}{\sin \theta}\right)^2} = \sqrt{R^2 + \left(\frac{-R \cos \theta}{\sin \theta}\right)^2} = \sqrt{R^2 + \frac{R^2 \cos^2 \theta}{\sin^2 \theta}} = \frac{R}{\sin \theta} \] - \( MO \): \[ MO = \sqrt{R^2 + \left(\frac{R (1 - \cos \theta)}{\sin \theta}\right)^2} \] (Not directly required for this part) 7. **Conclusion:** - Since \( PO = PM \), triangle \( \triangle PMO \) is isosceles with \( P \) as the main vertex. ### **Answer to Part 1:** 1. **\( \triangle PMO \) is isosceles with \( P \) as the main vertex because \( PO = PM \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s get our math caps on and dive into the geometric fun! To show that triangle \( P M O \) is isosceles with the main vertex at \( P \), consider that since \( MA \) and \( MC \) are tangents from point \( M \) to the circle \( (C) \), by the tangent-secant theorem, we have \( MA = MC \). Also, triangle \( OAM \) forms right angles at \( A \) and \( O \), which leads to \( PM = PO \). Hence, \( PM = PO \), making triangle \( P M O \) isosceles! Next, to demonstrate that \( \angle O P M = 2 \widehat{A O M} \), notice that angles subtended by the same arc are equal. Thus, since \( AO \) and \( MO \) are radii of the circle, we have \( \angle AOM = \angle AOM = \widehat{A O M} \). Because \( P M \) includes \( M \) and \( A \), the angle \( O P M \) encompasses twice that measurement due to the properties of inscribed angles and tangents. Voilà! Ready for the geometry rollercoaster? Buckle up for those isosceles trapezoids!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad