Pregunta
upstudy study bank question image url

a. Watch this video of Mrs. Hool completing a similar problem b. Reattempt the question from your test: i. Elijah is solving the quadratic equation \( 3 x^{2}-14 x-24=0 \) by factoring. His work is shown below. In which step did Elijah make his first error? What is it? \( 3 x^{2}-14 x-24=0 \) Step 1:3x Step 2: \( \left(3 x^{2}-4 x\right)+(18 x-24)=0 \) Step 3: \( x(3 x-4)+6(3 x-4)=0 \) Step \( 4:(3 x-4)(x+6)=0 \) Step \( 5: 3 x-4=0 \) or \( x+6=0 \) \( x=\frac{4}{3} \) or \( x=6 \)

Ask by Robbins Reed. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Elijah made his first error in Step 2 by incorrectly grouping the terms.

Solución

To determine where Elijah made his first error in solving the quadratic equation \( 3 x^{2}-14 x-24=0 \) by factoring, let's analyze each step of his work. 1. **Original Equation**: \[ 3 x^{2}-14 x-24=0 \] 2. **Step 1**: Elijah writes \( 3x \). This step is unclear and does not provide any useful information. 3. **Step 2**: \[ (3 x^{2}-4 x)+(18 x-24)=0 \] Here, Elijah attempts to group the terms. However, the grouping is incorrect. The correct grouping should maintain the original equation's structure. The term \( -14x \) should be split into two terms that add up to \( -14x \) while also considering the product of the leading coefficient and the constant term. 4. **Step 3**: \[ x(3 x-4)+6(3 x-4)=0 \] This step is based on the incorrect grouping from Step 2. Therefore, it is also incorrect. 5. **Step 4**: \[ (3 x-4)(x+6)=0 \] This step is derived from the previous incorrect step. 6. **Step 5**: \[ 3 x-4=0 \quad \text{or} \quad x+6=0 \] This leads to the solutions \( x=\frac{4}{3} \) or \( x=6 \). ### Conclusion: Elijah's first error occurred in **Step 2**, where he incorrectly grouped the terms. The correct approach would involve factoring the quadratic expression directly or using the quadratic formula. To find the correct factors, we can use the method of factoring directly from the original equation: 1. The product of \( a \) (3) and \( c \) (-24) is \( -72 \). 2. We need two numbers that multiply to \( -72 \) and add to \( -14 \). The correct pair is \( -18 \) and \( 4 \). 3. Thus, we can rewrite the equation as: \[ 3x^2 - 18x + 4x - 24 = 0 \] 4. Factoring gives: \[ 3x(x - 6) + 4(x - 6) = 0 \] 5. This leads to: \[ (3x + 4)(x - 6) = 0 \] The correct solutions would then be: \[ 3x + 4 = 0 \quad \Rightarrow \quad x = -\frac{4}{3} \] \[ x - 6 = 0 \quad \Rightarrow \quad x = 6 \] Thus, Elijah's first error was in Step 2, where he incorrectly grouped the terms.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Elijah's first error occurs in Step 2. When he attempted to factor the expression \( 3x^{2}-14x-24 \), he incorrectly split the middle term. The correct way to factor requires finding two numbers that multiply to \( 3 \times (-24) = -72 \) and add up to \(-14\). Unfortunately, the way he grouped terms does not yield the correct factors, leading to an incorrect setup for solving the quadratic. In follow-up steps, Elijah proceeds to incorrectly factor and solve the equation, leading him to find \( x=\frac{4}{3} \) and \( x=6 \) as the roots. However, the actual solutions to the equation \( 3x^{2}-14x-24 = 0 \) can be found by using the quadratic formula or correctly factoring the expression, which would show that the roots are different.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad