Pregunta

Using trigonometry, calculate the area of a triangle with sides measuring 10 cm and 15 cm, and an included angle of 30 degrees.

Ask by Grant Vega. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area of the triangle is 37.5 cm².

Solución

To calculate the area of a triangle when you know two sides and the included angle, you can use the **Sine Area Formula** from trigonometry. Here's how you can do it step-by-step: ### **Given:** - **Side \( a = 10 \) cm** - **Side \( b = 15 \) cm** - **Included Angle \( C = 30^\circ \)** ### **Sine Area Formula:** \[ \text{Area} = \frac{1}{2} \times a \times b \times \sin(C) \] ### **Plugging in the Values:** \[ \text{Area} = \frac{1}{2} \times 10 \, \text{cm} \times 15 \, \text{cm} \times \sin(30^\circ) \] ### **Calculating Step-by-Step:** 1. **Calculate the sine of the included angle:** \[ \sin(30^\circ) = 0.5 \] 2. **Multiply the sides and the sine of the angle:** \[ 10 \times 15 \times 0.5 = 75 \] 3. **Multiply by \( \frac{1}{2} \):** \[ \frac{1}{2} \times 75 = 37.5 \] ### **Final Answer:** \[ \text{Area} = 37.5 \, \text{cm}^2 \] So, the area of the triangle is **37.5 square centimeters**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the area of the triangle, you can use the formula: Area = 0.5 * a * b * sin(C), where a and b are the lengths of the sides, and C is the included angle. Plugging in the values: Area = 0.5 * 10 cm * 15 cm * sin(30°) = 0.5 * 10 * 15 * 0.5 = 37.5 cm². So, the area of the triangle is 37.5 cm²! Did you know that the concept of calculating areas using trigonometry dates back to ancient civilizations? The Greeks were particularly fascinated by geometry and used trigonometric principles in diverse applications, from astronomy to architecture. It's amazing to think that principles we use today were being explored thousands of years ago! Triangles are not just theoretical shapes; they play key roles in modern engineering! For example, trusses, which are used in bridges and roofs, are often designed using triangular formations. Their strength and stability come from the properties of triangles, which allow for the even distribution of weight. So, the next time you see a bridge, you can appreciate how trigonometry helps keep it standing strong!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad