Pregunta
upstudy study bank question image url

The demand curve for a product is modeled by \( q=\sqrt{4800-p^{2}} \), where \( p \) is the price per item in dollars, and \( q \) is the quantity in millions. If the company decided to raise the price of the item by \( \$ 3 \) a week, find the rate at which demand changes when the price is \( \$ 40 \). (Round your answer to 2 decimal places.) The demand will be? by

Ask by Dickson Dickson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When the price increases by \$3 per week at \$40, the demand decreases by approximately 2.12 million items per week.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find the rate at which demand changes with respect to price, we first need to differentiate the demand equation \( q = \sqrt{4800 - p^2} \) with respect to \( p \). The derivative \( \frac{dq}{dp} \) can be computed using the chain rule: \[ \frac{dq}{dp} = \frac{1}{2\sqrt{4800 - p^2}} \cdot (-2p) = \frac{-p}{\sqrt{4800 - p^2}}. \] Next, we evaluate this derivative at \( p = 40 \): \[ \frac{dq}{dp} \bigg|_{p=40} = \frac{-40}{\sqrt{4800 - 40^2}}. \] Calculating the square root: \[ 4800 - 40^2 = 4800 - 1600 = 3200 \quad \Rightarrow \quad \sqrt{3200} = 40\sqrt{8} = 40 \cdot 2\sqrt{2} = 80\sqrt{2}. \] Now substituting back into the derivative: \[ \frac{dq}{dp} \bigg|_{p=40} = \frac{-40}{80\sqrt{2}} = \frac{-1}{2\sqrt{2}}. \] Now we need the rate of change of demand when the price increases by \( \$3 \): \[ \frac{dq}{dt} = \frac{dq}{dp} \cdot \frac{dp}{dt}. \] Given that \( \frac{dp}{dt} = 3 \): \[ \frac{dq}{dt} = \left(\frac{-1}{2\sqrt{2}}\right) \cdot 3 = \frac{-3}{2\sqrt{2}}. \] Calculating that further: \[ \frac{-3}{2\sqrt{2}} \approx \frac{-3}{2 \cdot 1.414} \approx \frac{-3}{2.828} \approx -1.06. \] So, the rate at which the demand changes when the price is \( \$ 40 \) is approximately \( -1.06 \) million units per week. The demand will be decreasing by approximately \( 1.06 \) million units per week.

Latest Calculus Questions

Find \( \lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} \sin (1 / x)-(x+2)^{3}\right) \) (if it exists) and give a careful argument showing that your answer is correct. The notation lim the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is, the suppose that \( f \) is a real valued function of a real variable, \( a \) is an accumulation point of the domain of \( f \), and \( \ell, m \in \mathbb{R} \). Prove that if \( f(x) \rightarrow \ell \) as \( x \rightarrow a \) and \( f(x) \rightarrow m \) as \( x \rightarrow a \), then \( l=m \). (Explain carefully why it was important that we require \( a \) to be an accumulation point of the domain of \( f \).) Let \( f(x)=\frac{\sin \pi x}{x+1} \) for all \( x \neq-1 \). The following information is known about a function \( g \) defined for all real numbers \( x \neq 1 \) : (i) \( g=\frac{p}{q} \) where \( p(x)=a x^{2}+b x+c \) and \( q(x)=d x+e \) for some constants \( a, b, c, d, e \); (ii) the only \( x \)-intercept of the curve \( y=g(x) \) occurs at the origin; (iii) \( g(x) \geq 0 \) on the interval \( [0,1) \) and is negative elsewhere on its domain; (iv) \( g \) has a vertical asymptote at \( x=1 \); and (v) \( g(1 / 2)=3 \). Either find lim \( g(x) f(x) \) or else show that this limit does not exist. Hints. Write an explicit formula for \( g \) by determining the constants \( a \ldots e \). Use (ii) to find \( c \); use (ii) and (iii) to find \( a \); use (iv) to find a relationship between \( d \) and \( e \); then use (v) to obtain an explicit form for \( g \). Finally look at \( f(x) g(x) \); replace sin \( \pi x \) by sin( \( (x(x-1)+\pi) \) and use the formula for the sine of the sum of two numbers.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad