The demand curve for a product is modeled by \( q=\sqrt{4800-p^{2}} \), where \( p \) is the price per item in dollars, and \( q \) is the quantity in millions. If the company decided to raise the price of the item by \( \$ 3 \) a week, find the rate at which demand changes when the price is \( \$ 40 \). (Round your answer to 2 decimal places.) The demand will be? by
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the rate at which demand changes with respect to price, we first need to differentiate the demand equation \( q = \sqrt{4800 - p^2} \) with respect to \( p \). The derivative \( \frac{dq}{dp} \) can be computed using the chain rule: \[ \frac{dq}{dp} = \frac{1}{2\sqrt{4800 - p^2}} \cdot (-2p) = \frac{-p}{\sqrt{4800 - p^2}}. \] Next, we evaluate this derivative at \( p = 40 \): \[ \frac{dq}{dp} \bigg|_{p=40} = \frac{-40}{\sqrt{4800 - 40^2}}. \] Calculating the square root: \[ 4800 - 40^2 = 4800 - 1600 = 3200 \quad \Rightarrow \quad \sqrt{3200} = 40\sqrt{8} = 40 \cdot 2\sqrt{2} = 80\sqrt{2}. \] Now substituting back into the derivative: \[ \frac{dq}{dp} \bigg|_{p=40} = \frac{-40}{80\sqrt{2}} = \frac{-1}{2\sqrt{2}}. \] Now we need the rate of change of demand when the price increases by \( \$3 \): \[ \frac{dq}{dt} = \frac{dq}{dp} \cdot \frac{dp}{dt}. \] Given that \( \frac{dp}{dt} = 3 \): \[ \frac{dq}{dt} = \left(\frac{-1}{2\sqrt{2}}\right) \cdot 3 = \frac{-3}{2\sqrt{2}}. \] Calculating that further: \[ \frac{-3}{2\sqrt{2}} \approx \frac{-3}{2 \cdot 1.414} \approx \frac{-3}{2.828} \approx -1.06. \] So, the rate at which the demand changes when the price is \( \$ 40 \) is approximately \( -1.06 \) million units per week. The demand will be decreasing by approximately \( 1.06 \) million units per week.