Pregunta
upstudy study bank question image url

Match each value of the discriminant with the correct description of the number and type of solutions. Prompts Answers (1) Discriminant \( =25 \) (2) Discriminant \( =30 \) (3) Discriminant \( =0 \) two non-real (imaginary) solutions match (4) Discriminant \( =-9 \) \( \begin{array}{l}\text { one rational solution } \\ \text { two ratrational solutions solutions }\end{array} \)

Ask by Salazar Ray. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- (1) Discriminant \( = 25 \) → two distinct real solutions - (2) Discriminant \( = 30 \) → two distinct real solutions - (3) Discriminant \( = 0 \) → one rational solution - (4) Discriminant \( = -9 \) → two non-real (imaginary) solutions

Solución

To match each value of the discriminant with the correct description of the number and type of solutions, we need to understand how the discriminant (\(D\)) of a quadratic equation \(ax^2 + bx + c = 0\) determines the nature of the roots: 1. **If \(D > 0\)**: There are two distinct real solutions. 2. **If \(D = 0\)**: There is exactly one real solution (a repeated root). 3. **If \(D < 0\)**: There are two non-real (imaginary) solutions. Now, let's analyze each discriminant value provided: 1. **Discriminant \( = 25 \)**: Since \(25 > 0\), this corresponds to **two distinct real solutions**. 2. **Discriminant \( = 30 \)**: Since \(30 > 0\), this also corresponds to **two distinct real solutions**. 3. **Discriminant \( = 0 \)**: This corresponds to **one real solution** (a repeated root). 4. **Discriminant \( = -9 \)**: Since \(-9 < 0\), this corresponds to **two non-real (imaginary) solutions**. Now, let's match the discriminants with the descriptions: - (1) Discriminant \( = 25 \) → **two distinct real solutions** - (2) Discriminant \( = 30 \) → **two distinct real solutions** - (3) Discriminant \( = 0 \) → **one rational solution** - (4) Discriminant \( = -9 \) → **two non-real (imaginary) solutions** Thus, the matches are: - (1) Discriminant \( = 25 \) → two distinct real solutions - (2) Discriminant \( = 30 \) → two distinct real solutions - (3) Discriminant \( = 0 \) → one rational solution - (4) Discriminant \( = -9 \) → two non-real (imaginary) solutions

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When you encounter a positive discriminant, like \(25\) and \(30\), you're in the realm of real solutions! Specifically, both of these discriminants indicate two distinct real solutions, making your quadratic equation as lively as a dance party! For \(0\), your equation settles down to one real solution—think of it as the quiet moment after the party, where everything converges at one point. Now, if you venture into the world of negative discriminants, like \(-9\), get ready for some imaginary fun! This indicates two non-real (imaginary) solutions, reminiscent of characters in a romantic comedy who never quite meet, yet their story plays on in the imagination. So, basically: \( (1) \) and \( (2) \) get two distinct real solutions, \( (3) \) gets one rational solution, and \( (4) \) gets those delightful two non-real solutions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad