Solve the quadratic equation using the quadratic formula. Find only real solutions. If there are no real solutions, enter "DNE" in both boxes. \( 1+x-x^{2}=0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the quadratic equation \( 1 + x - x^{2} = 0 \), we first rewrite it in standard form: \( -x^{2} + x + 1 = 0 \), or multiplying through by -1, \( x^{2} - x - 1 = 0 \). Now, we can apply the quadratic formula, which is given by \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a = 1 \), \( b = -1 \), and \( c = -1 \). Calculating the discriminant: \( b^2 - 4ac = (-1)^{2} - 4(1)(-1) = 1 + 4 = 5 \). Now, plug values into the quadratic formula: \[ x = \frac{-(-1) \pm \sqrt{5}}{2(1)} = \frac{1 \pm \sqrt{5}}{2}. \] Thus, the real solutions are: \[ x = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad x = \frac{1 - \sqrt{5}}{2}. \] Final answers: \( x_1 = \frac{1 + \sqrt{5}}{2} \), \( x_2 = \frac{1 - \sqrt{5}}{2} \).