Pregunta
upstudy study bank question image url

Karen wants to advertise how many chocolate chips are in each Big Chip cookie at her bakery. She randomly selects a sample of 64 cookies and finds that the number of chocolate chips per cookie in the sample has a mean of 6.1 and a standard deviation of 3.4 . Construct a \( 90 \% \) confidence interval to estimate the average number of chocolate chips per cookie for Big Chip cookies? Enter your answers accurate to one decimal place.

Ask by Crawford Rogers. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The 90% confidence interval for the average number of chocolate chips per Big Chip cookie is (5.4, 6.8) chocolate chips per cookie.

Solución

To construct a 90% confidence interval for the average number of chocolate chips per Big Chip cookie, follow these steps: 1. **Identify the Given Information:** - **Sample size (n):** 64 - **Sample mean (x̄):** 6.1 - **Sample standard deviation (s):** 3.4 - **Confidence level:** 90% 2. **Determine the Appropriate Z-Score:** - For a 90% confidence level, the critical z-score (\( z^* \)) is **1.645**. 3. **Calculate the Standard Error (SE):** \[ SE = \frac{s}{\sqrt{n}} = \frac{3.4}{\sqrt{64}} = \frac{3.4}{8} = 0.425 \] 4. **Compute the Margin of Error (ME):** \[ ME = z^* \times SE = 1.645 \times 0.425 \approx 0.699 \] 5. **Construct the Confidence Interval:** \[ \text{Lower limit} = x̄ - ME = 6.1 - 0.7 = 5.4 \] \[ \text{Upper limit} = x̄ + ME = 6.1 + 0.7 = 6.8 \] **Final 90% Confidence Interval:** **(5.4, 6.8)** Answer: The 90 % confidence interval is (5.4, 6.8) chocolate chips per cookie

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the \(90\%\) confidence interval for the average number of chocolate chips per cookie, we first need the standard error of the mean (SEM), which is calculated using the standard deviation (SD) and the sample size (n). 1. Calculate the standard error (SEM): \[ SEM = \frac{SD}{\sqrt{n}} = \frac{3.4}{\sqrt{64}} = \frac{3.4}{8} = 0.425 \] 2. Determine the critical value for a \(90\%\) confidence level. For a two-tailed test with \(n-1 = 63\) degrees of freedom, the critical value (from Z-tables or using a calculator) is approximately \(1.645\). 3. Now calculate the margin of error (ME): \[ ME = Z \times SEM = 1.645 \times 0.425 \approx 0.6981 \] 4. Finally, construct the confidence interval: \[ CI = \text{mean} \pm ME = 6.1 \pm 0.6981 \] So, \[ CI = (6.1 - 0.6981, 6.1 + 0.6981) = (5.4, 6.8) \] Rounded to one decimal place, the \(90\%\) confidence interval for the average number of chocolate chips per cookie is approximately \( (5.4, 6.8) \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad