Pregunta
Simplify: \( w \cdot w^{7} \cdot w^{-9} \)
Ask by Delgado Harris. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \frac{1}{w} \)
Solución
To simplify the expression \( w \cdot w^{7} \cdot w^{-9} \), you can use the **laws of exponents**, specifically the **product of powers** rule. Here's how it works step-by-step:
1. **Combine the exponents:** When you multiply terms with the same base, you add their exponents.
\[
w \cdot w^{7} \cdot w^{-9} = w^{1} \cdot w^{7} \cdot w^{-9}
\]
2. **Add the exponents:**
\[
w^{1 + 7 - 9} = w^{-1}
\]
3. **Simplify the negative exponent:** A negative exponent indicates the reciprocal of the base raised to the positive exponent.
\[
w^{-1} = \frac{1}{w}
\]
**Final Answer:**
\[
\frac{1}{w}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify \( w \cdot w^{7} \cdot w^{-9} \), you can use the property of exponents that states when you multiply like bases, you add the exponents. So, combine the exponents: \[ 1 + 7 - 9 = -1 \] This means: \[ w \cdot w^{7} \cdot w^{-9} = w^{-1} \] Since \( w^{-1} \) can also be expressed as \( \frac{1}{w} \), the final simplified form is: \[ \frac{1}{w} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium