Pregunta
Which of the following is not an accurate formula to describe the following arithmetic sequence? \( 12,18,24,30, \ldots \) \( 18+6 n \) \( 6+6 n \) \( 12+6(n-1) \) \( 6 n+6 \)
Ask by Osborne George. in Japan
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 18 + 6n \) is not an accurate formula for the sequence.
Solución
To determine which formula does **not** accurately describe the arithmetic sequence \( 12, 18, 24, 30, \ldots \), let's analyze each option. We'll assume that \( n \) represents the term number in the sequence, starting from \( n = 1 \).
### Given Sequence:
- **Term 1 (\( n = 1 \))**: 12
- **Term 2 (\( n = 2 \))**: 18
- **Term 3 (\( n = 3 \))**: 24
- **Term 4 (\( n = 4 \))**: 30
- **...**
### Analyzing Each Formula:
1. **\( 18 + 6n \)**
- **For \( n = 1 \)**: \( 18 + 6(1) = 24 \) (Does **not** match term 1: 12)
- **Conclusion**: This formula **does not** correctly produce the first term of the sequence when \( n = 1 \).
2. **\( 6 + 6n \)**
- **For \( n = 1 \)**: \( 6 + 6(1) = 12 \) (Matches term 1)
- **For \( n = 2 \)**: \( 6 + 6(2) = 18 \) (Matches term 2)
- **Conclusion**: This formula correctly describes the sequence.
3. **\( 12 + 6(n - 1) \)**
- **For \( n = 1 \)**: \( 12 + 6(1 - 1) = 12 \) (Matches term 1)
- **For \( n = 2 \)**: \( 12 + 6(2 - 1) = 18 \) (Matches term 2)
- **Conclusion**: This formula correctly describes the sequence.
4. **\( 6n + 6 \)**
- **For \( n = 1 \)**: \( 6(1) + 6 = 12 \) (Matches term 1)
- **For \( n = 2 \)**: \( 6(2) + 6 = 18 \) (Matches term 2)
- **Conclusion**: This formula correctly describes the sequence.
### Final Determination:
Only **\( 18 + 6n \)** fails to accurately describe the given arithmetic sequence when \( n \) starts at 1.
**Answer:** \( 18 + 6 n \) is not an accurate formula for the given arithmetic sequence.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The sequence \( 12, 18, 24, 30, \ldots \) is an arithmetic sequence where the first term is 12 and the common difference is 6. The correct formula for the \( n \)-th term of this sequence is \( 12 + 6(n-1) \) for \( n = 1, 2, 3, \ldots \). However, the formula \( 18 + 6n \) is not accurate because it assumes that the first term is 18, resulting in the sequence \( 18, 24, 30, 36, \ldots \), which is different from the original sequence. So, bid farewell to \( 18 + 6n \)!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium