Pregunta
upstudy study bank question image url

Deon is inspecting a zipline at an adventure park. For safety reasons, the top platform must be 6.5 (a) Let \( x \) represent the height (in yards) of the top platform. Write an absolute value inequality platform. These heights are where the zipline will pass inspection. - \( \square \) \( \square \) \( \square \) \( \square \) - \( \square \) \( \leq \) \( \square \) \( \square \) \( + \) \( \square \) \( > \) \( \square \) \( \square \) - \( \square \) \( > \) \( \square \) (b) Solve the absolute value inequality from part (a). \( \square \) \( \square \) and \( \square \) \( \geq \square \)

Ask by Vaughan Santiago. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The platform height must be between 6 and 7 yards to pass inspection.

Solución

Sure, let's work through the problem step by step. ### **Problem Statement:** Deon is inspecting a zipline at an adventure park. For safety reasons, the height of the top platform must be **6.5 yards** (assuming the unit is yards based on the context). **(a)** Let \( x \) represent the height (in yards) of the top platform. Write an absolute value inequality to represent the allowable heights for the platform to pass inspection. **(b)** Solve the absolute value inequality from part (a). --- ### **Solution:** #### **Part (a): Writing the Absolute Value Inequality** To ensure the platform's height is safe, we assume there's an acceptable range around the central value of 6.5 yards. Typically, this involves a tolerance that the height can deviate from the central value. Although the exact tolerance isn't provided, for the sake of this problem, let's assume the platform height must be within **0.5 yards** of 6.5 yards. The absolute value inequality can be written as: \[ |x - 6.5| \leq 0.5 \] **Explanation:** - \( x \) is the actual height of the platform. - \( 6.5 \) is the required central height. - \( 0.5 \) is the maximum allowable deviation from 6.5 yards. #### **Part (b): Solving the Absolute Value Inequality** To solve the inequality \( |x - 6.5| \leq 0.5 \), we can break it down into a compound inequality: \[ -0.5 \leq x - 6.5 \leq 0.5 \] Now, solve for \( x \) by adding 6.5 to all parts of the inequality: \[ -0.5 + 6.5 \leq x \leq 0.5 + 6.5 \] \[ 6 \leq x \leq 7 \] **Explanation:** - The platform height \( x \) must be **at least 6 yards** and **at most 7 yards** to pass inspection. --- ### **Final Answer:** **(a)** The absolute value inequality is: \[ |x - 6.5| \leq 0.5 \] **(b)** Solving the inequality gives: \[ 6 \leq x \leq 7 \] So, the platform height must be **between 6 and 7 yards** to pass inspection.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To ensure the zipline passes inspection, we can define the acceptable height of the platform as being within a safe distance from the required height of 6.5 yards. Assuming we have a maximum allowable deviation of, say, 0.5 yards from that height, our absolute value inequality can be expressed as: \[ |x - 6.5| \leq 0.5 \] This means the height of the platform \( x \) must be within 0.5 yards of 6.5 yards. Now, let's find where this inequality stands. We can split the absolute value inequality into two parts. So, solving \( -0.5 \leq x - 6.5 \leq 0.5 \) gives us: 1. \( x - 6.5 \geq -0.5 \) leads to \( x \geq 6.0 \) 2. \( x - 6.5 \leq 0.5 \) leads to \( x \leq 7.0 \) Thus, the solution to the absolute value inequality is: \[ 6.0 \leq x \leq 7.0 \] So, the acceptable height range for the top platform is between 6.0 and 7.0 yards. Safety first—now the ziplines can keep soaring! Did you know that ziplines in adventure parks have a rich history? They were originally used in places like the Himalayas for transporting goods and people over difficult terrains. Modern zipline parks stem from this exciting use, providing thrills while ensuring safety and adventure! Also, if you plan to set up your own zipline, be sure to check local regulations regarding height and safety measures; they can vary widely! This ensures that your thrill-seekers have a safe and exhilarating experience.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad