Calculate the stroke length (in feet) of an engine with the following parameters: 6 cylinders, has an indicated mean effective pressure (IMEP) of 1510 psi per cylinder, a bore of 3.8 inches, operating at 1270 rpm , and operates at 1900 horsepower. Round to 2 decimal places.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the stroke length of the engine, we can use the formula for horsepower (\(HP\)) in terms of the dimensions and performance of the engine: \[ HP = \frac{(IMEP \times A \times L \times N)}{33,000} \] where: - \(HP\) is the horsepower (1900 HP) - \(IMEP\) is the indicated mean effective pressure (1510 psi) - \(A\) is the area of the piston (in square inches) - \(L\) is the stroke length (in inches) - \(N\) is the engine speed (number of power strokes per minute) Since this is a 6-cylinder engine, each cylinder works in a two-stroke cycle for every crankshaft rotation, meaning effective power strokes per minute for a four-stroke engine is half the RPM. Let's find the area \(A\) first: \[ A = \pi \left(\frac{B}{2}\right)^2 \] where \(B\) is the bore in inches. Given: - Bore \(B\) = 3.8 inches Thus, \[ A = \pi \left(\frac{3.8}{2}\right)^2 \approx 11.34 \text{ in}^2 \] ### Effective Power Strokes For a 6-cylinder engine at 1270 RPM: 1. Each cylinder produces a power stroke once every two revolutions (for a four-stroke engine). 2. Thus total effective strokes (assuming a four-stroke engine) = \[ N = 1270 \times \frac{6}{2} = 3810 \text{ strokes/min} \] ### Rearranging the Horsepower Formula We need to express stroke length \(L\): \[ L = \frac{HP \times 33,000}{IMEP \times A \times N} \] Plugging in the numbers: - \(HP = 1900\) - \(IMEP = 1510\) - \(A \approx 11.34\) - \(N = 3810\) Giving, \[ L = \frac{1900 \times 33,000}{1510 \times 11.34 \times 3810} \] Calculating: \[ L = \frac{62700000}{1510 \times 11.34 \times 3810} \approx 3.77 \text{ inches} \] To convert to feet: \[ L \approx \frac{3.77}{12} \approx 0.31 \text{ feet} \] So, the stroke length of the engine is approximately **0.31 feet** when rounded to two decimal places.