What are the zeros of the given rational function below? \( f(x)=\frac{x^{2}}{x^{3}-6 x^{2}+5 x} \) \( x=0 \) No zeros possible for this function \( x=-6 \) \( x=5 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the zeros of the rational function \( f(x) = \frac{x^2}{x^3 - 6x^2 + 5x} \), we need to set the numerator equal to zero. The numerator \( x^2 \) equals zero when \( x = 0 \). Therefore, \( x = 0 \) is the only zero of the function. The denominator, \( x^3 - 6x^2 + 5x \), is important for the function's behavior but does not affect the zeros. One common mistake in identifying zeros is overlooking the influence of the denominator. The function is undefined wherever the denominator equals zero, so while we focus on the zeros from the numerator, it's equally crucial to recognize that those points where the denominator is zero indicate vertical asymptotes, not zeros of the function.