Determine the end behavior and number of turning points of each polynomial function. \( \begin{array}{l}\text { 3. } f(x)=x^{3}-14 x-4 \\ \text { 4. } g(x)=5-17 x^{7}+9 x^{10}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
For the function \( f(x) = x^{3} - 14x - 4 \), the leading term is \( x^3 \), which means as \( x \) approaches \( +\infty \), \( f(x) \) also approaches \( +\infty \), and as \( x \) approaches \( -\infty \), \( f(x) \) approaches \( -\infty \). This indicates that the end behavior of \( f(x) \) is up to the right and down to the left. The number of turning points is at most one less than the degree of the polynomial, so \( f(x) \) can have up to 2 turning points. For \( g(x) = 5 - 17x^7 + 9x^{10} \), the leading term is \( 9x^{10} \), which means as \( x \) approaches \( +\infty \), \( g(x) \) approaches \( +\infty \), and as \( x \) approaches \( -\infty \), \( g(x) \) also approaches \( +\infty \). Thus, the end behavior is up on both ends. The degree is 10, so \( g(x) \) can have up to 9 turning points.