Responder
Simplify the expression \( \sqrt[3]{875 x^{5} y^{9}} \) by factoring and applying cube root properties:
1. **Factor Inside the Cube Root:**
- \( 875 = 125 \times 7 \)
- \( x^5 = x^3 \times x^2 \)
- \( y^9 = (y^3)^3 \)
2. **Apply Cube Root Properties:**
\[
\sqrt[3]{125} \times \sqrt[3]{7} \times \sqrt[3]{x^3} \times \sqrt[3]{x^2} \times \sqrt[3]{y^9}
\]
3. **Simplify Perfect Cubes:**
- \( \sqrt[3]{125} = 5 \)
- \( \sqrt[3]{x^3} = x \)
- \( \sqrt[3]{y^9} = y^3 \)
4. **Combine Terms:**
\[
5 \times x \times y^3 \times \sqrt[3]{7 x^2} = 5x y^{3} \sqrt[3]{7 x^{2}}
\]
**Final Simplified Expression:**
\[
5x y^{3} \sqrt[3]{7 x^{2}}
\]
Solución
To simplify the expression \( \sqrt[3]{875 x^{5} y^{9}} \) using the properties of rational numbers, follow these ordered steps:
### **Step 1: Factor Inside the Cube Root**
Break down each component inside the cube root into factors that include perfect cubes.
- **Factor 875:**
\( 875 = 125 \times 7 \)
(Since \(125 = 5^3\) is a perfect cube)
- **Factor \(x^5\):**
\( x^5 = x^3 \times x^2 \)
(Here, \(x^3\) is a perfect cube)
- **Factor \(y^9\):**
\( y^9 = (y^3)^3 \)
(Since \(y^3\) raised to the power of 3 is a perfect cube)
The expression now looks like:
\[
\sqrt[3]{125 \times 7 \times x^3 \times x^2 \times (y^3)^3}
\]
### **Step 2: Apply the Property of Cube Roots**
Use the property \( \sqrt[3]{a \times b \times c} = \sqrt[3]{a} \times \sqrt[3]{b} \times \sqrt[3]{c} \) to separate the factors.
\[
\sqrt[3]{125} \times \sqrt[3]{7} \times \sqrt[3]{x^3} \times \sqrt[3]{x^2} \times \sqrt[3]{(y^3)^3}
\]
### **Step 3: Simplify Each Cube Root**
Evaluate the cube roots that are perfect cubes.
- \( \sqrt[3]{125} = 5 \)
- \( \sqrt[3]{x^3} = x \)
- \( \sqrt[3]{(y^3)^3} = y^3 \)
So, the expression simplifies to:
\[
5 \times \sqrt[3]{7} \times x \times \sqrt[3]{x^2} \times y^3
\]
### **Step 4: Combine Like Terms and Constants**
Multiply the constants and like terms together to finalize the simplified expression.
\[
5x y^3 \sqrt[3]{7 x^2}
\]
### **Final Simplified Expression**
\[
5x y^{3} \sqrt[3]{7 x^{2}}
\]
This is the simplified form of the original expression using the properties of rational numbers.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución