8) \( \log _{7}\left(a b^{6}\right)^{5} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve \( \log_{7}\left(a b^{6}\right)^{5} \), we can use the power rule of logarithms. This rule states that \( \log_{b}(x^n) = n \cdot \log_{b}(x) \). Thus, we can pull the exponent 5 out in front: \[ \log_{7}\left(a b^{6}\right)^{5} = 5 \cdot \log_{7}\left(a b^{6}\right). \] Next, we use the product rule of logarithms, which states that \( \log_{b}(xy) = \log_{b}(x) + \log_{b}(y) \): \[ 5 \cdot \log_{7}\left(a b^{6}\right) = 5 \cdot \left(\log_{7}(a) + \log_{7}(b^{6})\right). \] Applying the power rule again on \( \log_{7}(b^{6}) \): \[ \log_{7}(b^{6}) = 6 \cdot \log_{7}(b). \] Putting it all together, we have: \[ \log_{7}\left(a b^{6}\right)^{5} = 5 \cdot \left(\log_{7}(a) + 6 \cdot \log_{7}(b)\right) = 5 \log_{7}(a) + 30 \log_{7}(b). \] So the final answer is: \[ \log_{7}\left(a b^{6}\right)^{5} = 5 \log_{7}(a) + 30 \log_{7}(b). \]